Introduction
to
Data Structures

Definition

» Data structure Is representation of the logical
relationship existing between individual elements of

data.

» In other words, a data structure is a way of organizing
all data items that considers not only the elements
stored but also their relationship to each other.

Introduction

» Data structure affects the design of both structural &
functional aspects of a program.

Program=algorithm + Data Structure

» You know that a algorithm is a step by step procedure
to solve a particular function.

Introduction

» That means, algorithm is a set of instruction written
to carry out certain tasks & the data structure is the
way of organizing the data with their logical
relationship retained.

» To develop a program of an algorithm, we should
select an appropriate data structure for that algorithm.

» Therefore algorithm and its associated data structures
from a program.

Classification of Data Structure

» Data structure are normally divided into two broad
categories:

o Primitive Data Structure
> Non-Primitive Data Structure

Classification of Data Structure

Data structure

Primitive DS

Non-Primitive DS

Integer

Float

Character

Pointer

-

Classification of Data Structure

Non-Primitive DS

Linea} | ist Non-Linear List

Array Queue Graph Trees

.Link"List Statck
AN

Primitive Data Structure

» There are basic structures and directly operated upon
by the machine instructions.

» In general, there are different representation on
different computers.

» Integer, Floating-point number, Character constants,
string constants, pointers etc, fall in this category.

Non-Primitive Data Structure

» T
» T
» T

nere are more sophisticated data structures.
nese are derived from the primitive data structures.

ne non-primitive data structures emphasize on

structuring of a group of homogeneous (same type) or
heterogeneous (different type) data items.

Non-Primitive Data Structure

» Lists, Stack, Queue, Tree, Graph are example of non-
primitive data structures.

» The design of an efficient data structure must take
operations to be performed on the data structure.

-

Non-Primitive Data Structure

» The most commonly used operation on data
structure are broadly categorized into following
types:

o Create
o Selection
- Updating
o Searching
° Sorting
> Merging
> Destroy or Delete

Different between them

» A primitive data structure is generally a basic structure
that is usually built into the language, such as an
Integer, a float.

» A non-primitive data structure is built out of primitive
data structures linked together in meaningful ways,
such as a or a linked-list, binary search tree, AVL Tree,
graph etc.

Description of various
Data Structures : Arrays

» An array Is defined as a set of finite number of
homogeneous elements or same data items.

» It means an array can contain one type of data only,
either all integer, all float-point number or all
character.

Arrays

» Simply, declaration of array is as follows:
Int arr[10]

» Where int specifies the data type or type of elements
arrays stores.

» “arr” 1s the name of array & the number specified
Inside the square brackets Is the number of elements
an array can store, this Is also called sized or length
of array.

Arrays

» Following are some of the concepts to be remembered
about arrays:

> The Individual element of an array can be
accessed by specifying name of the array,
following by index or subscript inside square
brackets.

> The first element of the array has index
zero[0]. It means the first element and last
element will be specified as:arr[0] & arr[9]

Respectively.

Arrays

- The elements of array will always be stored
In the consecutive (continues) memory
location.

> The number of elements that can be stored
In an array, that is the size of array or its
length i1s given by the following equation:

(Upperbound-lowerbound)+1

Arrays

> For the above array i1t would be

(9-0)+1=10,where 0 is the lower bound of
array and 9 Is the upper bound of array.

> Array can always be read or written through
loop. If we read a one-dimensional array it
require one loop for reading and other for
writing the array.

Arrays

> For example: Reading an array
For(1=0;1<=9;1++)
scanf(““%d”,&arr[1]);
> For example: Writing an array
For(i1=0;1<=9;1++)
printf(“%d”,arr[1]);

\ M

Arrays

> If we are reading or writing two-dimensional
array It would require two loops. And
similarly the array of a N dimension would
required N loops.

> Some common operation performed on array
are.

- Creation of an array
- Traversing an array

Arrays

> Insertion of new element

> Deletion of required element
> Modification of an element

- Merging of arrays

-

Lists

» Alists (Linear linked list) can be defined as a
collection of variable number of data items.

» Lists are the most commonly used non-primitive data
structures.

» An element of list must contain at least two fields, one
for storing data or information and other for storing
address of next element.

» As you know for storing address we have a special data
structure of list the address must be pointer type.

Lists

» Technically each such element is referred to as a node,
therefore a list can be defined as a collection of nodes
as show bellow:

[Linear Liked List]

Head

“AAA - BBB »CCC

L

§\tlon flelg Pointer field

nfc\z\\rm

Lists

» Types of linked lists:
o Single linked list
> Doubly linked list
> Single circular linked list
> Doubly circular linked list

.

Stack

» Astack Is also an ordered collection of elements like
arrays, but it has a special feature that deletion and
Insertion of elements can be done only from one end
called the top of the stack (TOP)

» Due to this property it is also called as last in first out
type of data structure (LIFO).

Stack

» It could be through of just like a stack of plates placed on
table in a party, a guest always takes off a fresh plate
from the top and the new plates are placed on to the stack
at the top.

» It IS a non-primitive data structure.

» When an element is inserted into a stack or removed
from the stack, Its base remains fixed where the top of
stack changes.

Stack

» Insertion of element into stack is called PUSH and
deletion of element from stack is called POP.

» The bellow show figure how the operations take place
on a stack:

PUSH POP

[STACK]

Stack

» The stack can be implemented into two ways:
- Using arrays (Static implementation)
> Using pointer (Dynamic implementation)

Queue

» Queue are first in first out type of data structure (i.e.
FIFO)

» In a queue new elements are added to the queue from
one end called REAR end and the element are always
removed from other end called the FRONT end.

» The people standing in a railway reservation row are
an example of queue.

Queue

» Each new person comes and stands at the end of
the row and person getting their reservation
confirmed get out of the row from the front end.

» The bellow show figure how the operations take
place on a stack:

10 | 20 | 30 | 40 | 50
|

rear

Queue

» The queue can be implemented into two ways:
- Using arrays (Static implementation)
> Using pointer (Dynamic implementation)

Trees

» Atree can be defined as finite set of data items (nodes).

» Tree Is non-linear type of data structure in which data
items are arranged or stored in a sorted sequence.

» Tree represent the hierarchical relationship between
various elements.

Trees

» In trees:

» There Is a special data item at the top of hierarchy
called the Root of the tree.

» The remaining data items are partitioned into number
of mutually exclusive subset, each of which is itself,
a tree which is called the sub tree.

» The tree always grows in length towards bottom in
data structures, unlike natural trees which grows
upwards.

Trees

» The tree structure organizes the data into branches,
which related the information.

/ A root
O
@}\@ (®

.

Graph

» Graph iIs a mathematical non-linear data structure
capable of representing many kind of physical
structures.

» It has found application in Geography, Chemistry and
Engineering sciences.

» Definition: A graph G(V,E) Is a set of vertices V and a
set of edges E.

Graph

» An edge connects a pair of vertices and many have
weight such as length, cost and another measuring
Instrument for according the graph.

» Vertices on the graph are shown as point or circles and
edges are drawn as arcs or line segment.

Graph

» Example of graph:

6
V2 » vb5
()

8

11

& G

[b] Undirected Graph

Graph

» Types of Graphs:
> Directed graph
- Undirected graph
> Simple graph
> Weighted graph
> Connected graph
> Non-connected graph

Arrays and Structures

» The array as an abstract data type

» Structures and Unions

ne polynomial Abstract Data Type
ne Sparse Matrix Abstract Data Type

ne Representation of Multidimensional
Arrays

2.1 The array as an ADT

» Arrays
- Array: a set of pairs, <index, value>
> data structure

- For each index, there is a value associated with that
index.

o representation (possible)
- Implemented by using consecutive memory.

- In mathematical terms, we call this a correspondence
or a mapping.

2.1 The array as an ADT

» When considering an ADT we are more
concerned with the operations that can be
performed on an array.

- Aside from creating a new array, most languages
provide only two standard operations for arrays,
one that retrieves a value, and a second that
stores a value.

> Structure 2.1 shows a definition of the array ADT

- The advantage of this ADT definition is that it

e Iearly points out the fact that the array is a

aacral structure than “a consecutive set of
\‘\

2.1 The array as an ADT

structure Array is
objects: A set of pairs <index, value> where for each value of index there is a value
from the set item. Index is a finite ordered set of one or more dimensions, for example,
{0, = -- , n=1} for one dimension, {(0, 0), (0, 1), (0, 2), (1. 0), (1, 1), (1, 2), (2, 0), (2,
1), (2, 2)} for two dimensions, elc.
functions:
forall A € Array, i € index, x € item, j, size € integer

Array Create(/, list) = return an array of j dimensions where list
1s a j-tuple whose ith element is the the size of
the ith dimension. /tems are undefined.
Item Retrieve(A, i) = if (i € index) return the item associated
with index value / in array A
else return error
Array Store(A,ix) = if (i inindex)
return an array that is identical to array
A except the new pair <i, x> has been
inserted else return error.

end Array

Structure 2.1: Abstract Data Type Array

T~ -

2.1 The array as an ADT

» Arrays in C
o int list[5], *plist[5];
- list[5]: (five integers) list[0], list[1], list[2], list[3],
list[4]
- *plist[5]: (five pointers to integers)
- plist[0], plist[1], plist[2], plist[3], plist[4]
- implementation of 1-D array
ist[O] base address = a

ist[1] o + sizeof(int)

ist[2] o + 2*sizeof(int)

ist[3] o + 3*sizeof(int)
4] o + 4*sizeof(int)

Ist]

2.1 The array as an ADT

» Arrays in C (cont’d)

- Compare and in C.
Same: list1 and list2 are pointers.
Difference: list2 reserves five locations.
> Notations:
list2 — a pointer to list2[0]
(list2 + i) — a pointer to list2[i] (&list2[i])

*(list2 + i) — list2][i]

2.1 The array

» Example:

1 -dimension array addressing

- int one[] = {0, 1, 2, 3, 4};

- Goal: print out address and value

- void print1(int *ptr, int rows){
/* print out a one-dimensional array using a pointer */
int i;
printf(“Address Contents\n”);
for (i=0; i < rows; i++)
printf(“%8u%5d\n”, ptr+i, *(ptr+i));

printf(“\n”);

2.2 Structures and Unions

» 2.2.1 Structures (records)

- Arrays are collections of data of the same type. In
C there is an alternate way of grouping data that
permit the data to vary in type.

- This mechanism is called the struct, short for structure.

- A structure is a collection of data items, where

each item is identified as to its type and name.

struct. { ;
char name[10]: strcpy (person.name, " james") ;

int age: person.age = 10;

tloat salary; person.salary = 35000;
} person;

2.2 Structures and Unions

» Create structure data type

- We can create our own structure data types by
using the typedef statement as below:

typedef struct human-being ({ or typedef struct (

char name[10]; char name[10];
int age; int age;
float salary; float salary;

} » } human—-being;
* INnIS says tnhat numan_peing Is tne name or tne type

defined by the structure definition, and we may follow
this definition with declarations of variables such as:

human_being personl, personZ2;

2.2 Structures and Unions

- We can also embed a structure within a structure.

typedef struct {
int month;
int day:
int year;
} date;

typedef struct human-being {
char name[10] ;
int age;
float salary;
date dob;
} s

- A person born on February 11, 1994, would have have
values for the date struct set as
personl.dob.month = 2;

personl.dob.day = 11;
personl.dob.year = 1944;

2.2 Structures and Unions

> A union declaration is similar to a structure.

> The fields of a union must share their memory space.

> Only one field of the union is “active” at any given time
- Example: Add fields for male and female.

typedef struct sex—-type {
enum tag—field {female, male} sex;

union {
int children;

] int beard ;
personl.sex_info.sex = male; }ou;
personl.sex_info.u.beard = FALSE; bi _

typedef struct human-being {
and char name[10];
person2.sex_info.sex = female; int age;

float salary;

date dob;

sex—-type sex—-info;
)3

human—being personl, person2;

person2.sex_info.u.children = 4;

2.2 Structures and Unions

» 2.2.3 Internal implementation of structures

- The fields of a structure in memory will be stored
in the same way using increasing address
locations in the order specified in the structure
definition.

- Holes or padding may actually occur

- Within a structure to permit two consecutive components
to be properly aligned within memory

> The size of an object of a struct or union type is
the amount of storage necessary to represent the
largest component, including any padding that
may be required.

2.2 Structures and Unions

» 2.2.4 Self-Referential Structures
- One or more of its components is a pointer to

itself. —

- typedef struct list{
char data;
I}ist *link;

- list item1, item2, item3;
item1.data="‘a’;
item2.data='b’;
item3.data="'c’;

Construct a list with three nodes
item1.link=&item2;
item2.link=&item3;

malloc: obtain a node (memory)
free: release memory

a s b s C

item1.link=item2.link=item3.link=NULL;

2.3 The polynomial ADT

» Ordered or Linear List Examples

o ordered (linear) list: (item1, item2, item3, ...,
itemn)

- (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday)

- (Ace, 2,3,4,5,6,7,8,9, 10, Jack, Queen, King)
- (basement, lobby, mezzanine, first, second)

- (1941, 1942, 1943, 1944, 1945)

- (a1, a2, a3, ..., an-1, an)

2.3 The polynomial ADT

» Operations on Ordered List
> Finding the length, n, of the list.

0 Fefa)ding the items from left to right (or right to
ert).

> Retrieving the /th element.
> Storing a new value into the i’th position.

> Inserting a new element at the position /, causing
elements numbered /, /+1, ..., nto become
numbered /+1, /+2, ..., n+1

> Deleting the element at position /7, causing
elements numbered /41, ..., nto become
numbered /, /+1, ..., n-1
» Implementation
- sequential mapping (1)~(4)
- non-sequential mapping (5)~(6)

\\ N

2.3 The polynomial ADT

» Polynomial examples:
- Two example polynomials are:
- Ax) = 3x2°42x°+4 and B(x) = x*+10x3+3x2+1
- Assume that we have two polynomials,
Ax) = Zax’ and B(x) = Tbx' where x is the variable,
a;is the coefficient, and /is the exponent, then:
- AX) + Bx) =X(a + b)x
- Alx) - Bx) = X(ax - (X))
- Similarly, we can define subtraction and division on
polynomials, as well as many other operations.

2.3 The polynomial ADT

» An ADT definition
. structure Polvnomial is
of a polynomial e i onr © i bnalud dordomipdim corscir e

functions:
for all poly, polvl, poly2 € Polynomial, coef € Coefficients, expon € Exponents

Polynomial Zero() = return the polynomial,
px)=0

Boolean IsZero(poly) = if (poly) return FALSE
else return TRUE

Coefficient Coet(polv.expon) = if(expon € poly) return its
coefhicient else return zero

Exponent Lead -Exp(poly) G return the largest exponent in
poly

if (expon & poly) return error
else return the polynomial poly
with the term <coef, expon=>
serted

Polynomial Remove(poly, expon) = if (expon € poly)

return the polynomial polv with
the term whose exponent is
expon deleted

else return crror

Polynomial Avach(poly, coef, expon)

Polyvnonual SingleMult(poly, coef, expon) U= return the polynomial
poly - coef - x“""

Polynomial Add(polyl, poly2) = return the polynomial
polvl + poly2

Polynomial Mult(polyl, polyv2) = return the polynomial

polyl « poly2

end Polynomial

Structure 2.2: Abstract data type Polynomial

2.3 The polynomial ADT

» There are two ways to create the type
polynomial in C

» Representation |

> define MAX_degree 101 /*MAX degree of polynomial+1*/
typedef struct{
Int degree; ~
float coef [MAX_degree];
}polynomial;

\ M

Polynomial Addition

- /*d =a + b, where a, b, and d are polynomials */
d = Zero()
while (! IsZero(a) && ! IsZero(b)) do {
switch COMPARE (Lead_Exp(a), Lead_Exp(b)) {
case -1:d =
Attach(d, Coef (b, Lead_Exp(b)), Lead_Exp(b));
b = Remove(b, Lead_Exp(b));
break;
case 0: sum = Coef (a, Lead_Exp (a)) + Coef (b, Lead_Exp(b));
if (sum) {
Attach (d, sum, Lead_Exp(a));
}
a = Remove(a, Lead_Exp(a));
b = Remove(b , Lead_Exp(b));
break;
case 1:d =
Attach(d, Coef (a, Lead_Exp(a)), Lead_Exp(a));
a = Remove(a, Lead_Exp(a));

}

insert any remaining terms of a or b into d

Gy 4 :Initial version of padd function(p.62)

2.3 The polynomial ADT

» Representation |l

- MAX_TERMS 100 /*size of terms array*/
typedef struct{
float coef;
Int expon;
}polynomial;
polynomial terms [MAX_TERMS];
Int avail = 0;

2.3 The polynomial ADT

» Use one global array to store all polynomials
> Figure 2.2 shows how these polynomials are stored in

the array terms. specification ~ representation
A(X) = 2x10004+1 poly <start, finish>
A <0,1>
B(x) = x4+10x3+3x2+1 3 <255

storage requirements: start, finish, 2*(finish-start+1)
non-sparse: twice as much as Representation I when all the items are nonzero

starta finisha starth finishb avail

) ! l & -
coef [*27 | ||T 1w |3 | |
exp | 1000 ‘ 0 | 4+ } 3 2 0 ’

0 l 2 3 4 5 6

T~ -

2.3 The polynomial ADT

» We would now like to
write a C function
that adds two
polynomials,

A and B, represented
as above to obtain D
= A+ B

> To produce D(x), padd

(Program 2.5) adds A(x) and
B(x) term by term.

Analysis: O(n+m)
is the number
AL,

void padd(int starta,int finisha,int startbh, int finishb,

int *startd,int *finishd)
{
/* add A(x) and B{xX) to obtain D(x) ¥/
float cecefficient;
*startd = avail;
while (starta <= finisha && startbh <= finishb)
switch (COMPARE (termg[startal .expon,
termg[startbh] .expon)) |
case -l: /* a expon < b expon */
attach(terms[starth] ,.coef,Lterms[startb] . expon)
startb+s+;
break:
* egual exponents */
coefficient = terms|startal.coef +
terms|startbh].coef;
if (coefficient)
attach{coefficient,terms|[starta]l .expon};
starta++;
startb++;
break;

case 1: /*

a expon > b expon */
attach{terms|starta]) .coef,terms|startal .expon)
startas+;

}

/* add in remaining terms of A(x) */

for{; starta <= finisha; starta++)
attach(terms|startal .coef,terms[startal .expon);

/* add in remaining terms of B(x) */

for{ ; startb <= finishb; startb++)

attach(terms [startb].coef, terms[starth].expon);

*finishd = avail-1;

Program 2.5: Function to add two polynomials

2.3 The polynomial ADT

void attach(float coefficient, int exponent)
{
/* add a new term to the polynomial */
1f (avail >= MAX_TERMS) {
fprintf (stderr,"Too many terms in the polynomial\n");

exit (1) ;
}
terms [avail] .coef = coefficient;
terms [avalil++] .expon = exponent;

1

J

Program 2.6: Function to add a new term

Problem: Compaction is required
when polynomials that are no longer needed.

2.4 The sparse matrix ADT

» 2.4.1 Introduction

> In mathematics, a matrix contains m rows and n

columns of elements, we write mxn to designate a
matrix with m rows and n columns.

row ()
row |
row 2
row 3

row 4

col 0 col | col2

—27
6
109

12

a8

(a)

4
-2
11

9
47

5*3

row () |
row | |
row 2
row 3
row 4

row S

col0 col 1 col2

15
0
0
0

91
0

0
I
0
0
0
0

0
3
0
0
0
28

(b)

col 3 cold cols

22
0
-0
0
(0
0

0 -5
0 0
0 0
0 0
0 0
0 0

___sparse matrix

<

6*6

Figure 2.3: Two matrices

B ey

2.4 The sparse matrix ADT

» The standard representation of a matrix is a
two dimensional array defined as
alMAX_ROWS|[MAX_COLYS].

- We can locate quickly any element by writing a[/][/]
» Sparse matrix wastes space

- We must consider alternate forms of representation.

- Our representation of sparse matrices should store
only nonzero elements.

- Each element is characterized by

2.4 The sparse matrix ADT

structure Sparse —Matrix is

} St r u Ct u re 2 . 3 objects: a set of triples, <row, column, value>, where row and column are integers and

form a unique combination, and value comes from the set item.

contains our tanctons:
. £~ . forall a, b € Sparse_Matrix, x € item, i, j, max—col, max—row € index
specification of | o
. Sparse —Matrix Create(max—row, max—col) ::=
th e m atrlx ADT return a Sparse_Matrix that can hold up to

max—items = max-—row X max—col and whose
maximum row size is max—row and whose

© A m | n I m al S et Of maximum column size is max—col,
T Sparse —Matrix Transpose(a) ::=
Ope ratlo n S return the matrix produced by interchanging

i N C u d e S m at rl X the row and column value of every triple.

Sparse -Matrix Add(a, b) ::=

I if the dimensions of @ and b are the st
Creatlon’ e dimensions of @ an ire the same

return the matrix produced by adding

adc |t|0n’ corresponding items, namely those with

wdentical row and column values.

mU tlpllcatlon, else return crror

Sparse _Matrix Multiply(a, b) ::=

a n C tra n S pO S e . if number of columns in a equals number of
rows in b

return the matrix o produced by multiplying a
by b according to the formula: d[i][j]=
Stalillk]-b[k]1j]) where d(i, j)is the (i, j)th
element

else return error.

Structure 2.3: Abstract data type Sparse-Matrix

2.4 The sparse matrix ADT

» We implement the Create operation as below:

Sparse —Matrix Create(max —row, max—col) ::=

#define MAX_TERMS 101 /* maximum number of terms +1%*/
typedef struct {

int col;
int row;
int value;
} term;
term a[MAX_TERMS] ;

2.4 The sparse matrix ADT

» Figure 2.4(a) shows how the sparse matrix of
Figure 2.3(b) is represented in the array a.
- Represented by a two-dimensional array.
- Each element is characterized by

of rows (Cokamhapnzero terms

R)l l \1h} row col value

— al0] 6 8 b[0)] 6 6 8
(1] 0 15 [1] 0 0 15
(2] 3 22 (2] 0 4 9]
3] n 5 -15 3] 1 | I
4] | ;i 2 | 3
a1 5 tanspase 5 =
6] 2 3 -6 [6] 30 22
(7] 4 0 9] (7] 3 2 -6
(8] 5 2 28 (8] 5 0 -15

(a) (b)

2.4 The sparse matrix ADT

» 2.4.2 Transpose a Matrix

> For each i

- take element <i, j, value> and store it in element <j, i, value>
of the transpose.

- difficulty: where to put <j, i, value>
(,15) ====> (. 15)
(L 22) > , 22)
(, —15) > (, —15)
(C11) ====> (C11)
Move elements down very often.
> For all elements in j,

place element <i, j, value> in element <j, i, value>

2.4 The sparse matrix ADT

» This algorithm is incorporated in transpose

(Program 2.7)

void transpose(term a[], term b[])
/* b 1s set to the transpose of a */
{

int n,1,3J, currentb;

n = al(0].value; /* total number of elements */
b[0).row = a[0].col; /* rows in b = columns in a */
b[0].col = a[0].row; /* columns in b = rows in a */

b[0].value = n;
if (n > 0) { /* non zero matrix */

currentb = 1;

__for (i = 0; i < a[0].col; i++)
/* transpose by the columns in a */
__for (J = 1; j <= n; j++)

/* find elements from the current column */
«—] if (a[j]l.col == i) {
/* element is in current column, add it to b */
b[currentb] .row = al[j].col;
b[currentb].col = a[j].row;
b[currentb] .value = a[j].value;
currentb++;

A

Scan the array
acolumns™ times.

Program 2.7: Transpose of a sparse matrix

2.4 The sparse matrix ADT

» Discussion: compared with 2-D array
representation
> O(columns*elements) vs. O(columns*rows)
- elements —-> columns * rows when non-sparse,
O(columns2*rows)
» Problem: Scan the array “columns” times.
- In fact, we can transpose a matrix represented as a
sequence of triples in O(columns + elements) time.
» Solution:

> First, determine the number of elements
in each column of the original matrix.

- Second, determine the starting positions of each
row
in the transpose matrix.

2.4 The sparse matrix ADT

» Compared with 2-D array representation:
O(columns-+elements) vs. O(columns*rows)
O(columns*rows)

. void fast_transpose(term al], term b[])
Cost: {
. m /* the transpose of a is placed in b */
Add Itlonal int row—terms|[MAX-COL], starting-pos|[MAX-COL]:;

int 1i,3j, num—cols af0).col, num—terms = al[0].value;
rOW terms a nd b[(0].row = num—cols; b[0]l.col = al[0].row;
—_— bl(0].value = num-terms;

* /

= if (num—terms > 0) { /* nonzero matrix
Sta rtl ng pOS a rrays for (i1 = 0; 1 < num—col ‘ L 4+4)
. row—terms|(i] = 0;

are required. for (i = 1; 1 <= num-terms; i++)

row—terms[ali]l.col]++;

Let the tWO a rrays starting-pos (0] = 1;
I—lor (1 = 1; 1 < num—cols; 1i++)
TayY starting—pos[i] =

rOW_termS a nd starting—pos|[i-1]

+ row—terms|[i-1];

- — for (i = 1; i <= num—terms; i++) {
Startlng pos be j = starting—poslali].col]++;
T bljl.row = al[i].col; bljl.coel = al[i].row;
Shared. : blj].value = al1].value;

t

:
\)
\\\\\\

Program 2.8: Fast transpose of a sparse matrix

2.4 The sparse matrix ADT

» After the execution of the third for loop, the
values of row_terms and starting_pos are:

[0] [1] [2] [3] [4] [5]
row tebms =2 1 2 2 01
starting pos=1 3 4 6 8 8

row col value row col value

al0] 6 6 8 blo] 6 6 '8
(1] 0 0 15 [1] 0 0 15
(2] 0 3 22 (2] 0 4 9]
[3] 0 5 -15 [3] | | 11
(4] | | t' Q 2 | 3
[5] | 2 t 2 5 28
[6] 2 3 [6] 3 0 22
(71 4 0 ()I [7] 3 2 -6
(8] 5 2 28 (8] 5 0 -15

(a) (b)

.'\‘- N - ~ - . -
~ Figure 2.4: Sparse matrix and its transpose stored as triples

e -y

2.4 The sparse matrix ADT

» 2.4.3 Matrix multiplication
- Definition:
Given A and Bwhere Ais mxnand Bis nxp, the

product matrix D has dimension mxp. Its </, />

element is
n-1

dij =2 abyp,
k=0

forO</<m
- Example:

1 00 I U 111
100 (0O0O0]=]1T11
100 (00O 111

Figure 2.5: Multiplication of two sparse matrices

B Ty

2.4 The sparse matrix ADT

» Sparse Matrix Multiplication
> Definition: [D],,,,=[Al ;,* [Bl 1+,
- Procedure: Fix a row of A and find all elements
in column jof Bfor /=0, 1, ..., p-1.
- Alternative 1.
Scan all of Bto find all elements in J.

> Alternative 2.
Compute the transpose of 5.
(Put all column elements consecutively)

- Once we have located the elements of row /7 of 4 and
column j of Bwe just do a merge operation similar to that
used in the polynomial addition of 2.2

2.4 The sparse matrix ADT

» General case:

- Array A is grouped by i, and after transpose,
array B is also grouped by j

a Sa S d Sd

b Sb < e Se

C Sc 4 f St
J

g Sg

The generation at most:
Qtries ad, ae, af, ag, bd, be, bf, bg, cd, ce, cf, cg

The sparse matrix ADT

» An Example

A = 1 O BT = 3 -1 0O B
-1 4?] 0 0 0
2 0 5
al[0] r@ <3val b.,[0]3 c3valk b
(1] WO ovué be[1]v" oPued b
2] 0 2 b.[2]1 0 1 -1 b
3] 1 ?Kmx 0 2 b
4] 1 1 b,[41 2 2 5 b
5] 1 2 6

SERES

|
O R W

v oD B

2.4 The sparse matrix ADT

» The programs 2.9 and 2.10 can obtain the product
matrix D which multiplies matrices A and 5.

term bl],
/* multiply two sparse matrices

{

veid mmult (term all,

totalb =
cols—a

1

rows—a =

int i,
all

|.row,
al0].val
1

ue; int

column,
int
totala = 1
int
int
if

row-begin = 1, row =
new-—b[MAX_TERMS] [3
'= b[0].row)

.
.

{cols—a

cerm

b[0] .value,

colsb =
all].row,

dafll)

* /

totald = 0;
= al0].col,
bl0].col,

sum = 0;

fprintf(stderr,"Incompatible matrices\n");

exit(1);

)
fast —transpose{b, new-b);
% /

/* gset boundary condition
altotala+l].row = rows—a;
new-bitotalb+l].row = cols-b;
new-bltotalb+l].ceol = 0;

for (1 = 1; 1 <= tetala;) {

new=bl(l].row;
1; totalb+1;)

column =
{§:=

for l o=

axb

{

/* multiply row of a by column of b */

if (alil.row !'= row) {
[storesum(d,&totald, row,column, &sum) :
i = row—begin;
for (; new—blj].row == column; j++)
L column = new-b[j].row;
}
—=lage if (new—b(j)l.row != column) |
storesum(d, &totald, row, column, &sum);
i = row—begin;
L column new-bljl.row;
|

switch (COMPARE(a(i].cel, new—b[j].col)) (

— alse

case -1: /* go Lo next term in a */
i++; break;
case Q: /* add Lerms, go to next Lerm in a and b*

¢+= (ali++].value * new—b|j++].value):

break:

sum

advance to next term in b ¥/

J++;

totalb+1 */

144)

) /I of for j <=

ali].row ==

end
for (; row;
;
row-begin = 1i;
H of for
d[0].row =

d[0].col =

1] .row;
i/

row = al
/* end i<=totala
rOWS—a;

totald;

cols—b; d(0].value =

/ Program 2.9: Sparse matrix multiplication

2.4 The sparse matrix ADT

void storesum(term d[], int *totald, int row, int column,
int *sum)
{
then it along with its row and column

/* 1f *sum != 0,
position is stored as the *totald+1 entry in d */

1if (*sum)
1f (*totald < MAX_TERMS) {

d[++*totald] .row = row;
d[*totald] .col = column;
d[*totald] .value = *sum;
*sum = 0;

}

else {

fprintf (stderr,"Numbers of terms in product
exceeds %d\n",MAX_TERMS) ;

exit (1) ;

Program 2.10: storesum function

e

2.4 The sparse matrix ADT

» Analyzing the algorithm

- cols_b * termsrow1 + totalb +
cols_b * termsrow?2 + totalb +
ot
cols_b * termsrowp + totalb

= cols_b * (termsrow1 + termsrow?2 + ... +
termsrowp)-+

rows_a * totalb
= cols_b * totala + row_a * totalb

O(cols_b * totala + rows_a * totalb)

2.4 The sparse matrix ADT

» Compared with matrix multiplication using
array
- for (i =0;i < rows_a; i++)
for (j=0; j < cols_b; j++) {
sum —O
for (k= O k < cols_a; k++)
sum += (alillk] *bIk]L);
dlil[j] =sum;

o

- optimal case:
total_a < rows_a * cols_a total_b < cols_a’
cols_b

> WOrse case:
o _a -->rows_a’ * cols_a, or
__> cols_a * cols_b

2.5 Representation of
multidimensional array

» The internal representation of
multidimensional arrays requires more
complex addressing formula.

o If an array is declared alupper]Jlupper;]...lupper,],
then it is easy to see that the number of
elements in n iS:

| [upper,
Where IT is tiie p1uuuct of the upper;s.
- Example:

- |If we declare a as a[10][10][10], then we require
10*10*10 = 1000 units of storage to hold the array.

2.5 Representation of
multidimensional array

» Represent multidimensional arrays:
order and co/umn major order.

- Row major order stores multidimensional arrays by
rows.

- Alupperllupper;] as
UPPEr, rTOWS, IroW,, row;, ..., FroW,,,e.o-1;
each row containing upperl elements.

2.5 Representation of
multidimensional array

» Row major order:

» Column major order: Alillj] : o + j*upper,
+ i
COly col, col,1.4
row, A[0][0] A[0][1] ... A[O][uv1-1]
o o+ U, o+ (uy-
1)* u,
row, A[1][0] A[1][1] ... A[1][u1-1]

.w§§_1 A[u0-1][0] All:u.O-ll][l] ... A[WO-1][ev1-1]

2.5 Representation of
multidimensional array

» To represent a three-dimensional array,
Alupperlupper|lupper,], we interpret the
array as upper,two-dimensional arrays of
dimension upper;xupper.

- To locate a[/[jl[k], we first obtain « +

as the address of a[/][0][O0]
because there are i two dimensional arrays of
size upper;*upper, preceding this element.

°a Tt +
as the address of a[/][/][A].

2.5 Representation of
multidimensional array

» Generalizing on the preceding discussion, we can
obtain the addressing formula for any element
Alill/;]...[7,_;] in an n-dimensional array declared

as: Alupperlupper;)...lupper,_;]
- The address for A[/[/;]...[/,_;] is:

OL + igupper upper, . . . upper,_,
+ [upper-uppers . .. upper,._,
r a; = H upper, 0<j <n-I + [yuppersuppery . . . upper,._
where: e
Ap-1 = l
| n—I1
+ i, oupper,_; =0+ Y, i;aq;

+i, j=0

2.6 The String Abstract data type

2.6.1 Introduction

» The String: component elements are
characters.

> A string to have the form, S = s0, ..., sn-1, where
s/ are characters taken from the character set of
the programming language.

- If n= 0, then Sis an empty or null string.

> Operations in ADT 2.4, p. 81

2.6 The String Abstract data type

» ADT String:

stracture Srring is
L objects: a finite set of zero or more characters.
| functions:
for all s, t & String, i, j. m € non-negative integers

String Null(zre) tI=s return a string whose maximum length is
2 characters, but is initially set to NU/LL
We write NULL as """,

Integer Compare(s,) vo== if s equals 7
retuemn O
else if s precedes ¢

returm —1
else returmn -+1

Boolean IsNull(s) i if (Compare(s, NUILL))
retuwrn FALSIE
else return TRUE

Integer L.ength(s) B if (Compare(s, NULLY)
return the number of characters in s
else return O.

String Concat(s, 1) ti= if (Compare(r, NULL)) }
return a string whose elements are those
of s followed by those of ¢
else returm s.

String Substr(s. i, j) ti= i ((F = 0) && (i +j—1) = Length(s))
return the string containing the characters
of s at positions i, i+ 1, - ,i+j—1.
else return NULL..

Structure 2.4: Abstract data type String

T~ -

2.6 The String Abstract data type

» In C, we represent strings as character
arrays terminated with the null character \O0.

H
i

For instance, suppose we had the strings:

:_V#.d'efine MAX_SIZE 100 /*maximum size of string */
..char s[MAX_SIZE] = { "dog® }3
;ichar t [MAX_SIZE] = {"~house"};

} - = e s e = B w _j— --"_-J

={0] sL1) =L2]1 =[3] TI07 tI1) tIZ2] £I37 €141 LIS

[a [o [o [™] [» [= Ju [=Te [~o]

Figure 2.8: String representation in C

N T

2.6 The String Abstract data type

» Now suppose we want to concatenate these
strings together to produce the new string:

- Two strings are joined together by strcat(s, t), which stores
the result in s. Although s has increased in length by five,
we have no additional space in sto store the extra five
characters. Our compiler handled this problem inelegantly:
it simply overwrote the memory to fit in the extra five
characters. Since we declared timmediately after s, this
meant that part of the word “house” disappeared.

2.6 The String Abstract data type

» C string
functior

82 Arrays And Structures

Function

Description

char ¥strcat(char *dest, char *src)

concatenate dest and sro strings;
return result in dest

char *strncat(char *dest, char “sre, int ”n)

concatenate desr and 72 characters
from sre; return result in dest

char *stremp(char *sirl, char *str2)

compare two strings;
return < O if serd = srr2;
O if stri = str2;

=>= O if strl = str2

char “strncmp(char *strl, char *ser2, int n)

compare first 2 characters
return <= O if srrl =< sr2;
O if serd = 5102,

= 1 if stri = st:2

char *strepy(char *dest, char “src)

copy sro into dest; return desr

char “strncpy(char “dest, char *src, int n)

copy 7 characters from src
string into desz; return dest;

size -t strien(char *s)

return the lengt_h of as

char *strchr(char *s, int c¢)

char “strrchr(char *s, inr c)

return pointer to the first
occurrence of ¢ in §;
return NULL if not present

return pointer to last occurrence of
c in s; return NULL if not present

char “strroki(char *s, char '*dclirni:ers)

return a token from s token is
surrounded by delimiters

char *slrslr(Zh_ar *y, char *pat)

retarn pointer 1o start of
par in s

Size —t strspn(char s, char “spanser)

scan s for characters in spanser;
return length of span

size —t strespn(char %s, char *spanset)

scan s for characters not in spansetz;
return length of span

char “strpbrk(char *s, char *spanset)

scan s for characters in spanser;
return pointer to first occurrence
of a character from sparnset

Figure 2.7: C string functions

2.6 The String Abstract data type

» Example 2.2[String insertion]:

- Assume that we have two strings, say string 1
and string 2, and that we want to insert string 2
into string 1 starting at the /th position of string
1. We begin with the declarations:

> In addition to creating the two strings, we also
have created a pointer for each string.

f£include <string.h>

gdlefine MAX-SIZE 100 /*size of largeslt string*/
char strvingl [MAX_SIZE], *s = stringl:

char sitring2[Ma2X_SIZE], *L = string2:;

2.6 The String Abstract data type

» Now suppose that the first string contains
*‘amobile” and the second contains “uto’.
- we want to insert “uto”

starting at position 1 «
the first string, thereb
producing the word —
“automobile.’ initially

femp ——= a [\0

§ —=<a|m|o|blif[]]|e|\)

o=l u | L] 0|0

o w) alter striepy (remp,s.i)

femip —={ aln|t]|o|\0

(b) after srreat (temp,1)

temp —={ a|uftjo|lmlo|lb|i]|]l]|e

() afier srrear (temp, (5 +1))

Figure 2.9: String insertion example

2.6 The String Abstract data type

» String insertion function:

> It should never be used in practice as it is
wasteful in its use of time and space.

void strnins (char *s, char *t, int i)
ARG
/% dnsert string £t odinto string s at position i %/
char string[(MAX. .STIZE], *temp = gstring;

if (i = 0 && i » strlen(s)) {
fprintf(stdery,"Position is out of bounds \n");
exit (1) ;

}

if (lstrlen(s))
stropy (s, 12) 7

else 1f (strlen(t)) {
strncpy (Cemp, =, 1) ;
atrcat (Cemp, L) ;
atrcat (temp, (s4+1i));
straopy (s, temp) ;

}

Program 2.11: String insertion function

B T

2.6 The String Abstract data type

» 2.6.2 Pattern Matching:
- Assume that we have two strings, string and pat where pat
is a pattern to be searched for in string.
- If we have the following declarations:

char pat [MAX-_SIZE], string[MAX_STZE], *t;

- Then we use the following statements to determine if patis
in string:.

if (£ = strstr(string,pat))

printf ("The string from strstr is: %s\n",t);
else

printf (*"The pattern was not found with strstr\n");

Y == 4 T Tt rT e " -

)where nis the Iength of pat and m is the Iengfﬁ of

2.6 The String Abstract data type

» We can improve on an exhaustive pattern

matching technique by quitting when
strien(pat) is greater than the number of

remaining characters in the string.

int nfind(char *string, char *pat)

{
/* malbtah Lhe last character of pattern first, and

Lhen matceh from the boaeginning */

int i,J,start = 0O;
int lasts = strlen(string)—1;
int lastp = gstrlen(pat)-—1L1;
int endmatah = lastp;
for (i = 0; endmataoh == lasts; endmatchi 4+, start4++) |

if (stringlendmatch] == pat([lastp]l)

for (Jj = 0, i = gtart; 3§ =< lastp &&
stringli] == pat|[3j)l; di4+, J++)
if (J == lastp)

raetcturn gtart; /* successtfal */
}
return —1;

}

Program 2.12: Pattern matching by checking end indices first

2.6 The String Abstract data type

» Example 2.3 [Simulation of nfind]
> Suppose pat="aab”

and e A=
string="ababbaabaa.” I e T o
> Analysis of nfind. T e

The computing time fc SR T

these string is linear N B T L

: T e e L]
start endmatch aSIS

in the length of the B e e ' e
o l.——hi‘r T (LS
string O(m), but the i

: : 0 W L0 3 O S L O N B
Worst case is still - T
O(n-m) T L 0 Y

Figure 2.10: Simulation of afind

2.6 The String Abstract data type

» Ideally, we would like an algorithm that
works in

O(strlen(string)+ strlen(pat)) time.This is
optimal for this problem as in the worst
case it is necessary to look at all characters
in the pattern and string at least once.

» Knuth,Morris, and Pratt have developed a
pattern matching algorithm that works in
this way and has linear complexity.

2.6 The String Abstract data type

» Suppose pat="abcabcacab’

Let s =5052 *°° Sm-; be the string and assume that we are currently determining
whether or not there is a match beginning at s;. If s;#a then, clearly, we may proceed by
comparing s;,; and a. Similarly if 5; = @ and s;,, # » then we may proceed by compar-

ing s;,1 and a. If s;5;,, = ab and s;,> #* ¢ then we have the situation:
5 = ‘- a b + ? ? . X a : r
pat = ‘a b c a b c a c a b’

The ? implies that we do not know what the character in s is. The first 7 in s representis
S;i+2 and s;.» # ¢. At this point we know that we may continue the search for a match by
comparing the first character in pat with s;,>. There is no need to compare this character
of pat with s;,; as we already know that s;,; is the same as the second character of pat,
b, and so s;,; #a. Let us try this again assuming a match of the first four characters in
pat followed by a nonmatch, i.e., 5;,4 #* b. We now have the situation:

s ‘- a b c a ? . P . 7 54
b

?
pat c a b c a c a &

-

We observe that the search for a match can proceed by comparing s;.4 and the second
character in pat, b. This is the first place a partial match can occur by sliding the pattern
pat towards the right. Thus, by knowing the characters in the patterm and the position in
the pattern where a mismatch occurs with a character in s we can determine where in the
pattern to continue the search for a match without moving backwards in s. To formalize
this, we define a failure function for a pattern.

e -y

2.6 The String Abstract data
type(14/19)

Definition: Ifp = pop, * - Pni is a pattern, then its failure function, £, 1s defined as:
. largest i < j such that pop * - pi=Pj-iPj-i+2 ~ ' Pjif such ani = 0 exists
fG = -1 otherwise
For the example pattern, pat = abecabcacab, we have:
j 6 1 2 3 4 5 6 7 8 9
pat a b ¢ a b ¢ a ¢ a b
f -1 -1 -1 0 1 2 3 -1 0 1

» From the definition of the failure function, we arrive at
the following rule for pattern matching: if a partial match
is found such that S/-/...5/-7=POP]...Pj-1 and S/ /= Pj
then matching may be resumed by comparing Si and Pf(j-
1)+1ifj!=0.Ifj= 0, then we may continue by

mparing Si+1 and PO.

AR

\\\\\\\

'''''
\\\\\\

2.6 The String Abstract data type

» This pattern matching rule translates into
function pmatch.

Finclude <stdio.h>

#finclude <string.h>

ffdefine max_ string size 100
#define max_ pattern_ size 100
int pmatch () ;

wvoid £ail ()

int failure |[max pattern_sizel];
char string[max string size];
char pat [max_ pattern sizel;

int pmatch (char *string, char *pat)

{
/% Knuth, Morris, Pratt string matching algorithm */
int 1 =0, 3 = 0;
int lens = strlen(string):
int lenp = strlen(pat):;
while (1 < lens && 3 < lenp) {
if (string[i] == pat[j]) {
i++; j++; 1}
else 1if (j == 0) i++;
else j = failure[j-=1]1+1;
}
return ((j == lenp) ? (i-lenp) : -1);
}

Program 2.13: Knuth, Morris, Pratt pattern matching algorithm

2.6 The String Abstract data type

» Analysis of pmatch:

- The while loop is iterated until the end of either the
string or the pattern is reached. Since /is never
decreased, the lines that increase /cannot be executed
more than m = strlen(string) times. The resetting of jto
failure[j-1]+1 decreases j++ as otherwise, jfalls off the
pattern. Each time the statement j++ is executed, 7/is
also incremented. So jcannot be incremented more
than m times. Hence the complexity of function pmatch
is O(m) = O(strien(string)).

2.6 The String Abstract data type

- |If we can compute the failure function in
O(strlen(pad) time, then the entire pattern
matching process will have a computing time
proportional to the sum of the lengths of the
string and pattern. Fortunately, there is a fast
way to compute the failure function. This is based
upon the following restatement of the failure

fl N Val d VoVl
=] if j =0 . |
fGj)= {f"G - 1)+ 1 wherem is the least integer k for which p si_1y41 = P;
B if there is no k satisfying the above

(note that £'(j) = f (j) and () = £ (F* ()))-

M _\.
W

2.6 The String Abstract data type

! void fail(char *pat)
ey compute the pattern’s failure function */
;: ;iint n = strlen(pat);
. failure([0] = -1:
. for (9=1; 94 = n: Jax) A
' i = failurel[j—1]:
while ((pat[j] != patlis+l]) && (i >= 0))
L= EAITHFETI)
it (patliil]l == pakbli+ll])
failure[j] = i+1l:
e else failurel[j] = —-1;
e
i

:' Program 2.14: Computing the failure function

MODULE 2
Stacks and Queues

Abstract Data Type

» Abstract Data Type as a design tool

» Concerns only on the important concept or
model

» No concern on implementation details.
» Stack & Queue is an example of ADT
» An array is not ADT.

\ ‘{‘ :v::'; i).‘N
INF | ' 4

A/ L e g~ e , ~ 4 HTY sl oY a TV al oW,
vwwildl IS the dlfferendce:

» Stack & Queue vs. Array

- Arrays are data storage structures while stacks and
queues are specialized DS and used as
programmer’s tools.

» Stack - a container that allows push and pop

» Queue - a container that allows enqueue and
dequeue

» No concern on implementation details.

» In an array any item can be accessed, while in
these data structures access is restricted.

» They are more abstract than arrays.

Questions?

» Array is not ADT

<
4
)

s Linked list ADT?
s Binary-tree ADT?
s Hash table ADT?

» What about graph?

Stacks

» Allows access to only the last item inserted.

» An item is inserted or removed from the stack
from one end called the “top” of the stack.

» This mechanism is called Last-In-First—-Out
(LIFO).

A Stack Applet example

http://www2.latech.edu/~box/ds/Stack/Stack.html

t

» Placing a data item on the top is called
“‘pushing”, while removing an item from the
top is called “popping’ it.

» push and pop are the primary stack
operations.

» Some of the applications are :
microprocessors, some older calculators etc.

Example of Stack codes

» First example stack ADT and implementation

C:\Documents and Settings\box\My

Documents\CS\CSC\220\ReaderPrograms\ReaderFiles\Chap04\Stack\stack.ja
va

StackX

-maxSize : int
-stackArray [] : long

stackApp Rkt End2 -top : int

| L Interfacet-o0—{+stackX()

+push() : void

+pop() : long

+peek() : long

+isEmpty() : bool

+isFull() : bool

» push and pop operations are pertormed in
ime.

file:///C:/Documents and Settings/box/My Documents/CS/CSC/220/ReaderPrograms/ReaderFiles/Chap04/Stack/stack.java

Example of Stack codes

» Reversed word
» What is it?

» ABC -> CBA

C:\Documents and Settings\box\My
Documents\CS\CSC\220\ReaderPrograms\ReaderFi

les\Chap(04\Reverse\reverse.java

.

file:///C:/Documents and Settings/box/My Documents/CS/CSC/220/ReaderPrograms/ReaderFiles/Chap04/Reverse/reverse.java

Example of Stack codes

» BracketChecker (balancer)

» A syntax checker (compiler) that understands
a language contammg any strmgs with
balanced brackets ° and ‘), ‘1, ‘¥

- S -> BI S1 Br
> S1 -> Bl string Br
o BI -> l{i | i[i | I(I
° Br->9 [I, [}
C:\Documents and Settings\box\My

Documents\CS\CSC\220\ReaderPrograms\ReaderFi
les\Chap04\Brackets\brackets.java

.

file:///C:/Documents and Settings/box/My Documents/CS/CSC/220/ReaderPrograms/ReaderFiles/Chap04/Brackets/brackets.java

()

l oy fi fy €
Jueues

» Queue is an ADT data structure similar to stack,
except that the first item to be inserted is the first
one to be removed.

» This mechanism is called First-In-First-Out (FIFO).

» Placing an item in a queue is called “insertion or
enqueue”, which is done at the end of the queue
called “rear”.

» Removing an item from a queue is called “deletion
or dequeue”, which is done at the other end of the
queue called “front”.

» Some of the applications are : printer queue,
keystroke queue, etc.

Circular Queue
/ = g W B 4 4
Circuidar ueue

» When a new item is inserted at the rear, the
pointer to rear moves upwards.

» Similarly, when an item is deleted from the
queue the front arrow moves downwards.

» After a few insert and delete operations the
rear might reach the end of the queue and no
more items can be inserted although the
items from the front of the queue have been
deleted and there is space in the queue.

Sl 'Y ol I . \f\ Y ~
Circular Queue

» To solve this problem, queues implement
wrapping around. Such queues are called
Circular Queues.

» Both the front and the rear pointers wrap
around to the beginning of the array.

» It is also called as “Ring buffer”.

» Items can inserted and deleted from a queue
in O(1) time.

Queue Example

QueueApp

Queue

-maxSize : int
-queueArray [] : long
-front : int

-rear : int

-nitems : int

+Queue()

+insert() : void
+remove() : long
+peekFront() : long
+isEmpty() : bool
+isFull() : bool
+size() : int

Queue sample code

» C:\Documents and Settings\box\My
Documents\CS\CSC\220\ReaderPrograms\Re
aderFiles\Chap04\Queue\queue.java

.

file:///C:/Documents and Settings/box/My Documents/CS/CSC/220/ReaderPrograms/ReaderFiles/Chap04/Queue/queue.java

Various Queues

» Normal queue (FIFO)

» Circular Queue (Normal Queue)
» Double-ended Queue (Deque)
» Priority Queue

Deque

» It is a double-ended queue.

» Items can be inserted and deleted from either
ends.

» More versatile data structure than stack or

gueue.

» E.g. policy-based application (e.g. low priority
go to the end, high go to the front)

» In a case where you want to sort the queue
once in a while, What sorting algorithm will
you use?

PIIVNILAVE A Al c
Priority Queues

» More specialized data structure.
» Similar to Queue, having front and rear.
» Items are removed from the front.

» Items are ordered by key value so that the
item with the lowest key (or highest) is always
at the front.

» Items are inserted in proper position to
maintain the order.

» Let’s discuss complexity

-maxSize : int

-
+Queue()
+insert() : void
+remove() : long
+peekMin() : long
+isEmpty() : bool
+isFull() : bool

Priority Queues

» Used in multitasking operating system.

» They are generally represented using "heap”
data structure.

» Insertion runs in O(n) time, deletion in O(1)
time.

» C:\Documents and Settings\box\ My
Documents\CS\CSC\220\ReaderPrograms\Re

aderFiles\Chap04\PriorityQ\priorityQ.java

.

file:///C:/Documents and Settings/box/My Documents/CS/CSC/220/ReaderPrograms/ReaderFiles/Chap04/PriorityQ/priorityQ.java

Parsing Arithmetic
Expressions
» 2 + 3 e 23+

» 2 +4 %5 e 245* +
» (2 +4)*7)+3%(9-5)), 2 4+ 7*395-*4

» Infix vs postfix

» Why do we want to do this
transformation?

.

Infix to postfix

» Read ch from input until empty
- If ch is arg , output = output + arg
- If chis “(“, push *(‘;
> If ch is op and higher than top push ch
- If chis “)” or end of input,
* output = output + pop() until empty or top is “("
- Read next input
» C:\Documents and Settings\box\My
Documents\CS\CSC\220\ReaderPrograms\Re
aderFiles\Chap04\Postfix\postfix.java

.

file:///C:/Documents and Settings/box/My Documents/CS/CSC/220/ReaderPrograms/ReaderFiles/Chap04/Postfix/postfix.java

Postfix eval

»5+2*3->523*+
» Algorithm
> While input is not empty
o If ch is number , push (ch)
> Else
* Pop (a)
» Pop(b)
- Eval (ch, a, b)
» C:\Documents and Settings\box\My
Documents\CS\CSC\220\ReaderPrograms\Re
aderFiles\Chap04\Postfix\postfix.java

.

file:///C:/Documents and Settings/box/My Documents/CS/CSC/220/ReaderPrograms/ReaderFiles/Chap04/Postfix/postfix.java

Recursive Thinking
» Recursion is.
- A problem-solving approach, that can ...
- Generate simple solutions to ...
- Certain kinds of problems that ...
- Would be difficult to solve in other ways
» Recursion splits a problem:
> Into one or more simpler versions of itself

Chapter 7: Recursion

23

Recursive Thinking: Another

Example
Strategy for searching a sorted array:
1. if the array is empty

2. return -1 as the search result (not
present)

3. else if the middle element == target

4, return subscript of the middle
element

5. else if target < middle element

6. recursively search elements before
middle

else
ively search elements.after the

24

Recursive Thinking: The General
Approach

1. if problem is “small enough’

2 solve it directly

3. else

4 break into one or more smaller
subproblems

5. solve each subproblem recursively

6. combine results into solution to whole
problem

Chapter 7: Recursion
25

)

)

)

£ »

ments ror Recursive

At least one “small” case that you can solve
directly
A way of breaking a larger problem down into:

> One or more smaller subproblems
- Each of the same kind as the original

A way of combining subproblem results into an
overall solution to the larger problem

Chapter 7: Recursion

26

General Recursive Design Strategy

» ldentify the base case(s) (for direct solution)

» Devise a problem splitting strateqy
Subproblems must be smaller
Subproblems must work towards a base case

» Devise a solution combining strateqgy

m A

27

Recursive Design Example

Recursive algorithm for finding length of a string.

1. if string is empty (no characters)

2 return O & base case

3. else & recursive case

4, compute length of string without first character
5 return 1 + that length

Note.: Not best technique for this problem; illustrates the
approach.

Chapter 7: Recursion

28

Recursive Design Example: Code

Recursive algorithm for finding length of a string.
public static int length (String str) ({
if (str == null ||
str.equals (V"))
return 0O;
else
return length(str.substring(l)) + 1;

Chapter 7: Recursion
29

Recursive Design Example:
printChars

Recursive algorithm for printing a string:
public static void printChars
(String str) {
if (str == null ||
str.equals (V"))
return;
else

System.out.println(str.charAt(0)) ;

printChars (str.substring(1l)) ;

Chapter 7: Recursion

30

Recursive Design Example:
printChars2

Recursive algorithm for printing a string?
public static void printChars?2
(String str) {
i1f (str == null ||
str.equals (V"))
return;
else
printChars2 (str.substring (1)) ;
System.out.println(str.charAt(0));

Chapter 7: Recursion
31

Recursive Desigh Example:
mystery

What does this do?
public static int mystery (int n) ({
if (n == 0)
return O;
else
return n + mystery(n-1) ;

Chapter 7: Recursion

32

Proving a Recursive Method
Correct
Recall Proof by Induction:

1. Prove the theorem for the base case(s). n=0
2. Show that:

/fthe theorem is assumed true for n,
Then it must be true for n+1

Result: Theorem true for all n > 0.

Chapter 7: Recursion
33

Recursive proofis similar to induction:

1. Show base case recognized and solved correctly
2. Show that

- [fall smaller problems are solved correctly,

- Then original problem is also solved
correctly

3. Show that each recursive case makes progress towards
the base case € terminates properly

Chapter 7: Recursion

34

Tracing a Recursive Method

Recursive Definitions of
Mathematical Formulas

» Mathematicians often use recursive definitions

» These lead very naturally to recursive
algorithms

» Examples include:
- Factorial
> Powers
- Greatest common divisor

Chapter 7: Recursion
36

Recursive Definitions: Factorial

» O =1
»n! = nx((n-1)!

Facoori=al C4d

FiGwaRRE 7.5
Tra—= o =y -I
Factorial Cdl recurn 4 * Factorial (20
= C:;fn = * Fmctoriali{Zlz
z C—.—:-:_:: 2 * Factoriallllsz

L
J—C:;: 1 = Facoordis] 080y

a

» If a recursive function never reaches its base case,
a stack overflow error occurs

Chapter 7: Recursion

37

Recursive Definitions: Factorial
Code

public static int factorial (int n) {

if (n == 0) // or: throw exc. if < 0
return 1;
else

return n * factorial (n-1);

Chapter 7: Recursion
38

Recursive Definitions: Power

y X0 =1
» XN = X x X"!

public static double power
(double x, int n) {
if (n <= 0) // or: throw exc.
return 1;
else
return x * power(x, n-1);

Chapter 7: Recursion

if <O

39

Recursive Definitions: Greatest
Common Divisor

Definition of gcd(m, n), for integers m > n > O:
- gcd(m, n) = n, if n divides m evenly
- gcd(m, n) = gcd(n, m % n), otherwise

public static int ged (int m, int n) {
if (m < n)
return ged(n, m);
else if (m $ n == 0) // could check n>0
return n;

else
return gcd(n, m % n);
}

“
Chapter 7: Recursion
40
W\

Recursive Definitions: Fibonacci
Series

Definition of fib;, for integeri > O:

 fib, = 1

 fib, = 1

» fib,, = fib,_, + fib,,_,, forn > 2

& A

Fibonacci Series Code

public static int fib (int n) {

i1f (n <= 2)
return 1;
else

return fib(n-1) + fib(n-2);
}

This is straightforward, but an inefficient
recursion ...

m A

42

Efficiency of Recursion: Inefficient

Fibonacci

FIGURE 7.6

Methad Calls Resulting
from Fibanacei (5) //_/ \

=

bormacat (3%

~

Tibonacc1(3)

c1(2)

fibonacci (1)

o

| o= = D ey

.

Efficient Fibonacci: Cod

(D

public static int fibStart (int n) {
return fibo(1l, 0, n);
}

private static int fibo (
int curr, int prev, int n) ({
if (n <= 1)
return curr;
else

return fibo (curr+prev, curr, n-1);

Chapter 7: Recursion

44

Efficient Fibonacci: A Trace

fibonacciStartis)

FIGURE 7.7
Trace af 5 l
fibonacci Start(h) recurn fibofl, &, 5

(r:;:: fibkoil, 1. 43

5
- | C;;i HLE. Llah
SC;ﬁ, fiba{3, 2, 23
5 C;:ui, HL:EDJ.}H

5

Chapter 7: Recursion

45

Problem Solving with Recursion

» Towers of Hanoi
» Counting grid squares in a blob
» Backtracking, as in maze search

FIGURE 7.16

FIGURE 7.11 A Sample Grid for Counting Cells in a Blob
Childrens Yersion of Towsars of Hanoi

nie
3
faw favi
av w . ‘ w “w RNl
" 1 P »n e

Chapter 7: Recursion

46

Towers of Hanoi: Description

Goal: Move entire tower to another peg
Rules:
1. You can move only the top disk from a peg.

2. You can only put a smaller on a larger disk
(or on an empty peg)

FIGURE 7.11
Childrens Version of Towers of Hanoi

E= .

L M R

Chapter 7: Recursion
47

Towers of Hanoi: Solution
Strategy

FIGURE 7.11
Childrens Yersion of Towsers of Hanoi

L M R

FIGURE 7.12
Towers of Hanoi After the First Two Steps in Solution of the Thres-Disk Froblem

2

-

FIGURE 7.1%
Towers of Hared After First Two Steps in Solution of Two-Disk Problem

Chapter 7: Recursion

48

Towers of Hanoi: Solution
Strategy (2)

FIGURE 7.14
Towers of Harcd After the First Two Steps in Sclution of the Four-Disk Problem

L\ |

Chapter 7: Recursion

49

Towers of Hanoi: Program

Crncrifimratrinn

TABLE 7.1
ImpLts ard Outputs for Towers of Hanoi Problem

Mumber of disks {an integer)
Letter of starting peg: L {lett), M (middle), or R {rnght)
Letter ot destination peg (L. M, ar R), but ditferent from starting peg

Letter ot temporary peg (L, M, or R}, but ditferent from starting peg and
destination peg

A list of moves

Chapter 7: Recursion
50

Towers of Hanoi: Program
Specification (2)

TABLE 7.2
Class TowersOfHanod

public String showmoves(int n, char Builds a string containing all moves tor a game with n
startPag, char destPeg, char tempPag) disks on startPeg that will be moved to destPag using
tampPaqg for temporary storage of disks being mowved.

Chapter 7: Recursion

51

Towers of Hanoi: Recursion

Structure

move(n, src, dst, tmp) =
if n==1: move disk 1 from src to dst

otherwise:
move(n-
move dis
move(n-1

. src, tmp, dst)
K n from src to dst

, tmp, dst, src)

Chapter 7: Recursion

52

1) I

[C VATV 4 | ot Al A
Towers of Hanol: Coqe

public class TowersOfHanoi ({
public static String showMoves (int n,

char src, char dst, char tmp) {

if (n == 1)
return “Move disk 1 from “ + src +

A\ tO A\ _|_ dSt '|' \\\n//,.

else return
showMoves (n-1, src, tmp, dst) +
“Move disk "+ n + Y from “ + src +

“to ™ + dst + “\n” +

showMoves (n-1, tmp, dst, src);

Chapter 7: Recursion

53

How big will the string be for a tower of size n?
We’ll just count lines; call this L(n).

» Forn = 1, one line: L(1) = 1

» For n > 1, one line plus twice L for next smaller
size:

L(n+1) =2 x L(n) + 1

Solving this gives L(n) = 2" -1 = O(2")
So, don’t try this for very large n - you will do a

~lot of string concatenation and garbage
- CoNe , and then run out of heap space and

Chapter 7: Recursion

54

MODULE 3
Linked Lists

List Overview

» Linked lists
- Abstract data type (ADT)

» Basic operations of linked lists
- Insert, find, delete, print, etc.

» Variations of linked lists
o Circular linked lists
> Doubly linked lists

.

Linked Lists

Head

» A is a series of connected

» Each node contains at least
- A piece of data (any type)

o Pointer to the next node in the list

» . pointer to the first nod
» The last node points to NULL

.

€

node

data pointer

A Simple Linked List Class

» We use two classes: and

» Declare Node class for the nodes
> data: double-type data in this example
> next: a pointer to the next node in the list

class Node {
public:
double data; // data
Node* next; // pointer to next

b

A Simple Linked List Class

» Declare List, which contains
> head: a pointer to the first node in the list.
Since the list is empty initially, head is set to NULL
- Operations on List

class List {

public:
List (void) { head = NULL; } // constructor
~List (void) ; // destructor
bool IsEmpty() { return head == NULL; }

Node* InsertNode (int index, double Xx);
int FindNode (double x);
int DeleteNode (double x);
void DisplayList (void)
private:
Node* head;

A Simple Linked List Class

» Operations of List

- IsEmpty: determine whether or not the list is empty
InsertNode: insert a new node at a particular
position
FindNode: find a node with a given value
DeleteNode: delete a node with a given value
DisplayList: print all the nodes in the list

(@)

(0]

(©)

o

Inserting a new node

» Node* InsertNode (1nt i1ndex, double x)

Insert a node with data equal to x after the index’ th
elements. (i.e., when index = 0, insert the node as the first element;

when index = 1, insert the node after the first element, and so on)
If the insertion is successful, return the inserted node.

Otherwise, return NULL.
(If index is < 0 or > length of the list, the insertion will fail.)

(¢]

o

» Steps
1. Locate index’th element B
2. Allocate memory for the new node VA
3. Point the new node to its successor q

4. Point the new node’s predecessor to the new nod

newNode

Inserting a new node

» Possible cases of InsertNode
1. Insert into an empty list
2. Insert in front
3. Insert at back
4. Insert in middle
» But, in fact, only need to handle two cases
> |Insert as the first node (Case 1 and Case 2)
> Insert in the middle or at the end of the list (Case 3
and Case 4)

Inserting a new node

Node* List::InsertNode (int index, double x) { Try to locate
if (index < 0) return NULL; index’th node. If it
int currIndex 1; doesn’t EXiSt,
Node* currNode = head; return NULL.
while (currNode && index > currIndex) {

currNode = currNode->next;
currIndex++;
}
if (index > 0 && currNode == NULL) return NULL;
Node* newNode = new Node;
newNode->data = X;
if (index == 0) {
newNode->next = head;
head = newNode;
}
else {
newNode->next = currNode->next;

currNode->next = newNode;

ewNode;

Inserting a new node

Node* List::InsertNode (int index, double x) {
if (index < 0) return NULL;

int currIndex = 1;

Node* currNode = head;

while (currNode && index > currIndex) {
currNode = currNode->next;
currIndex++;

}

if (index > 0 && currNode == NULL) return NULL;

Node* newNode = new Node;

newNode->data = X;

1f (1ndex ==) { \
newNode->next = head;
head = newNode;

}

else {
newNode->next = currNode->next;

currNode->next = newNode;

ewNode;

Inserting a new node

Node* List::InsertNode (int index, double x) {
if (index < 0) return NULL;

int currIndex = 1;
Node* currNode = head;
while (currNode && index > currIndex) {
currNode = currNode->next;
currlndex++;
}
if (index > 0 && currNode == NULL) return NULL;
Node* newNode = new Node; /
newNode->data = X;
if (index == 0) { head
newNode->next = head; >
head = newNode;
}
else {
newNode->next = currNode->next; newNode

currNode->next = newNode;

ewNode;

Inserting a new node

Node* List::InsertNode (int index, double x) {
if (index < 0) return NULL;

int currIndex = 1;

Node* currNode = head;

while (currNode && index > currIndex) {
currNode = currNode->next;

currIndex++;

}

if (index > 0 && currNode == NULL) return NULL;
Node* newNode = new Node;
newNode->data = X7
if (index == 0) {
newNode->next = head;
head = BEWNGIEYE |[NSert after currNode
} currNode

else {
newNode->next = currNode->next;
currNode->next = newNode;

S~

ewNode;

newNode

Finding a node

» int FindNode (double x)
- Search for a node with the value equal to x in the list.

> If such a node is found, return its position. Otherwise,
return O.

int List::FindNode (double x) {

Node* currNode = head;

int currlndex = 1;

while (currNode && currNode->data != x) {
currNode = currNode—->next;

currlIndex++;

}

if (currNode) return currlndex;
return 0;

Deleting a node

» 1nt DeleteNode (double x)
- Delete a node with the value equal to x from the list.
> If such a node is found, return its position. Otherwise,
return 0.
» Steps
> Find the desirable node (similar to FindNode)
- Release the memory occupied by the found node
- Set the pointer of the predecessor of the found node to
the successor of the found node
» Like InsertNode, there are two special cases
- Delete first node
- Delete the node in middle or at the end of the list

Deleting a node

int List::DeleteNode (double x) {

Node* prevNode = UL Try to find the node with
Node* currNode = head; its value equal to x
int currIndex = 1;
while (currNode && currNode->data !'= x) {
prevNode = currNode;
currNode = currNode->next;
currlndex++;

}

if (currNode) {
1f (prevNode) {

prevNode->next = currNode->next;
delete currNode;

}

else {

head = currNode->next;
delete currNode;

}

return currlndex;

}

eturn 0;

Deleting a node

int List::DeleteNode (double x) {

Node* prevNode = NULL;

Node* currNode = head;

int currIndex = 1;

while (currNode && currNode->data !'= x) {
prevNode = currNode;
currNode = currNode->next;
currlndex++;

prevNode currNode

1f (currNode) {
1if (prevNode) {

prevNode->next = currNode->next;
delete currNode;

}

else {

head = currNode->next;
delete currNode;

}

return currlndex;

}

eturn 0;

Deleting a node

int List::DeleteNode (double x) {

Node* prevNode = NULL;

Node* currNode = head;

int currIndex = 1;

while (currNode && currNode->data !'= x) {
prevNode = currNode;
currNode = currNode->next;
currlndex++;

}

if (currNode) {

1f (prevNode) {
prevNode->next = currNode->next;
delete currNode;

}

else {
head = currNode->next;
delete currNode;

}

return currlndex;

} head currNode

B8 IR

Printing all the elements

» vo1d DisplayList (void)
> Print the data of all the elements
> Print the number of the nodes in the list

volid List::DisplaylList ()
{

int num = 0,

Node* currNode = head;

while (currNode != NULL) {
cout << currNode->data << endl;
currNode = currNode->next;
num++;

}

cout << "Number of nodes in the list: " << num << endl;

Destroying the list

» ~List (void)
> Use the destructor to release all the memory used by the
list.

> Step through the list and delete each node one by one.

List::~List (void) {
Node* currNode = head, *nextNode = NULL;
while (currNode != NULL)

{

nextNode = currNode->next;
// destroy the current node
delete currNode;

currNode = nextNode;

result

S | n g Ll Number of nodes in the list: 3

5.0 found
4.5 not found
6
int main (void) 5
{ Number of nodes in the list: 2

1.1 st NSskEs

list.InsertNode (0, 7.0);

list.InsertNode(l, 5.0);

list.InsertNode (-1, 5.0); // unsuccessful
(

list.InsertNode (0, 6.0); // successful
list.InsertNode (8, 4.0); // unsuccessful

// print all the elements

list.DisplayList () ;

if(list.FindNode (5.0) > 0) cout << "5.0 found" << endl;

else cout << "5.0 not found" << endl;
if(list.FindNode(4.5) > 0) cout << "4.5 found" << endl;
else cout << "4.5 not found" << endl;

list.DeleteNode (7.0) ;
i list.DisplayList () ;

Sl

Variations of Linked Lists

v Circular linked lists
- The last node points to the first node of the list

E1E D=0

Head
- How do we know when we have finished
traversing the list? (Tip: check if the pointer of
the current node is equal to the head.)

.

Variations of Linked Lists

» Doubly linked lists

- Each node points to not only successor but the
predecessor

o Thhelre are two NULL: at the first and last nodes in
the list

- Advantage: given a node, it is easy to visit its
redecessor. Convenient to traverse lists
ackwards

Array versus Linked Lists

» Linked lists are more complex to code and
manage than arrays, but they have some distinct
advantages.

(e]

. a linked list can easily grow and shrink in size.

- We don’t need to know how many nodes will be in the list.

They are created in memory as needed.

- In contrast, the size of a C++ array is fixed at compilation

time.

- To insert or delete an element in an array, we need to copy

to temporary variables to make room for new elements or
close the gap caused by deleted elements.

- With a linked list, no need to move other nodes. Only need

to reset some pointers.

Insertion Description

ehead— o4d 1| o17[4| 0142 1 o//

» Follow the previous steps and we get

oStep 1 eStep 2

(1} [=[-

eStep 3

ess - -Gl

Insertion Description

» Insertion at t
» Insertion att
» Insertion in t

ne top of the list
ne end of the list

ne middle of the list

Insertion at the end

Steps:

» Create a Node

» Set the node data Values
» Connect the pointers

Insertion Description

ehead— o4d 1| o17[4| 0142 1 o//

» Follow the previous steps and we get

oStep 1 eStep 2

(1} [=[-

eStep 3

142‘-'—-' 93 | -

head —-| 48‘-|—>‘ 17 ‘-|—>

Insertion Description

» Insertion at t
» Insertion att
» Insertion in t

ne top of the list
ne end of the list

ne middle of the list

Insertion in the middle

Steps:

» Create a Node

» Set the node data Values
» Break pointer connection
» Re-connect the pointers

.

Insertion Description

head —-I?FI—»W 142 /]

oStep 1 oStep 2
[+ [=-
eStep 3
oeStep 4

— [d-[o7 [3 ss[{-[re2] 1=
O —

I head

Outline

» Introduction

» Insertion Description

» Deletion Description

Basic Node Implementation
Conclusion

vV Vv

Deletion Description

» De
» De
» De

eting from t
eting from t
eting from t

ne top of the list
ne end of the list

ne middle of the list

.

Deletion Description

» De
» De
» De

eting from t
eting from t
eting from t

ne top of the list
ne end of the list

ne middle of the list

Deleting from the top

Steps

» Break the pointer connection
» Re—connect the nodes

» Delete the node

Deletion Description

ehea
o6

ehead

o4

|.

o[

gk

o[

)zE\L\ -

ohead\\\\

| o4 | 1] o17 042 [+

|,

Deletion Description

» De
» De
» De

eting from t
eting from t
eting from t

ne top of the list
ne end of the list

ne middle of the list

Deleting from the end

Steps

» Break the pointer connection

» Set previous node pointer to NULL
» Delete the node

.

Deletion Description

ehea
o6

o4

|.

o[

gk

\1 -
\1 o |l el Tl vl

Deletion Description

» De
» De
» De

eting from t
eting from t
eting from t

ne top of the list
ne end of the list

ne middle of the list

Deleting from the Middle

Steps

» Set previous Node pointer to next node
» Break Node pointer connection

» Delete the node

.

Deletion Description

ehead

| ea| 1= o17| | es2| 1|
ehea F\
ohea:\ \‘ m‘ ‘42H—H
AN

el

o4

Basic Node Implementation

The following code is written in C++:

Struct Node

{
int data; //any type of data could be another
struct
Node *next; //this is an important piece of code
“pointer”

};

Threaded Binary Tree

Threaded Binary Tree

» In a linked representation of a binary tree,
the number of null links (null pointers) are
actually more than non-null pointers.

» Consider the following binary tree:
o/®\
P
@ @
<ol OO &

A Binary tree with the null poir

_\

Threaded Binary Tree

» In above binary tree, there are 7 null pointers
& actual 5 pointers.

» In all there are 12 pointers.

» We can generalize it that for any binary tree
with n nodes there will be (n+1) null pointers
and 2n total pointers.

» The objective here to make effective use of
these null pointers.

» A. J. perils & C. Thornton jointly proposed idea
to make effective use of these null pointers.

» According to this idea we are going to replace
all the null pointers by the appropriate pointer
valugsssalled threads.

Threaded Binary Tree

» And binary tree with such pointers are called
threaded tree.

» In the memory representation of a threaded
vinary tree, it is necessary to distinguish
netween a normal pointer and a thread.

Threaded Binary Tree

- Therefore we have an alternate node
representation for a threaded binary tree
which contains five fields as show bellow:

lthread lcluld data rchild rtleead
—_— -
left right
threaded tag threaded tag

For any node p, m a tlhreaded bmary tree.

Ithred(p)=1 mdicates Icluld (p) 15 a thread pomter
Ithred(p)=0 mdicates lclald (p) 15 a normal
rthred(p)=1 mdicates rchald (p) 15 a thread
rthred(p)=0 mdicates rcluld (p) 15 a normal pomter

RN

Threaded Binary Tree

» Also one may choose a one-way threading or a
two-way threading.

» Here, our threading will correspond to the in
order traversal of T.

Threaded Binary Tree
One-Way

» Accordingly, in the one way threading of T, a
thread will appear in the right field of a node
and will point to the next node in the in-order
traversal of T.

» See the bellow example of one-way in-order
threading.

Threaded Binary Tree:
One-Way

A
,C~

AN VAT

//
]
Inorder of bellow tree is: D,B,F.E,A,G,C,L,J,HK //‘

.

L

One-way morder threading

Threaded Binary Tree
Two-Way

» In the two-way threading of T.

» A thread will also appear in the left field of a
node and will point to the preceding node in
the in-order traversal of tree T.

» Furthermore, the left pointer of the first node
and the right pointer of the last node (in the
in—order traversal of T) will contain the null
value when T does not have a header node.

Threaded Binary Tree

» Bellow figure show two-way in-order
threading.

» Here, right pointer=next node of in—-order
traversal and left pointer=previous node of
in—order traversal

» Inorder of bellow tree is: D,B,F,E,A,G,C,L,J,H,K

Threaded Binary Tree

A

aaaaaaaaaaaaaaa

Threaded Binary Tree

Two-way Threading with Header node

» Again two-way threading has left pointer of
the first node and right pointer of the last
node (in the inorder traversal of T) will
contain the null value when T will point to
the header nodes is called two-way threading
with header node threaded binary tree.

Threaded Binary Tree

» Bellow figure to explain two-way threading with
header »~-~

AN

B / N

Threaded Binary Tree

» Bellow example of link representation of
threading binary tree.

» In-order traversal of bellow tree:
G,F,B,A,D,C,E

Threaded Binary Tree

NUL

L
AR R

\ 0 c | N
T

7/

Threaded Binary Tree

» Advantages of threaded binary tree:

» Threaded binary trees have numerous
advantages over non-threaded binary trees
listed as below:

- The traversal operation is more faster than that of its
unthreaded version, because with threaded binary tree
non-recursive implementation is possible which can

run faster and does not require the botheration of
stack management.

Threaded Binary Tree

» Advantages of threaded binary tree:

- The second advantage is more understated with a
threaded binary tree, we can efficiently determine the
predecessor and successor nodes starting from any
node. In case of unthreaded binary tree, however,
this task is more time consuming and difficult. For
this case a stack is required to provide upward
pointing information in the tree whereas in a
threaded binary tree, without having to include the
overhead of using a stack mechanism the same can
be carried out with the threads.

Threaded Binary Tree

» Advantages of threaded binary tree:

- Any node can be accessible from any other node.
Threads are usually more to upward whereas links
are downward. Thus in a threaded tree, one can move
in their direction and nodes are in fact circularly
linked. This is not possible in unthreaded counter
part because there we can move only in downward
direction starting from root.

> Insertion into and deletions from a threaded tree are
although time consuming operations but these are
very easy to implement.

Threaded Binary Tree

» Disadvantages of threaded binary tree:
> Insertion and deletion from a threaded tree are very
time consuming operation compare to hon-threaded
binary tree.

> This tree require additional bit to identify the
threaded link.

Binary Search Trees

What is a binary tree?

) each node can have up to two
successor nodes ()
- The predecessor node of a node is called its
- The "beginning"” node is called the (no parent)
> A node without childrenis called a

E\ <2°

A Level 0

Level 2

A Tree Has a Root Node

ROOT NODE Owner
Jake
Manager Chef
Brad Caroal
|
Waitress Waiter Cook Helpe
Joyce Cpris Max Len

23

|_eaf nodes have no children

Owner
Jake
Manager Chef
Ber Caroal
Waitress Waiter Cook Helper
Joyce Cpris Max Len

LEAF NODES

What is a binary tree? (cont.)

v PropertyZ: a unique path exists from the
root to every other node

\A
/

/ \ |

- 5 e

notTree | &

Some terminology

» Ancestor of a node: any node on the path from
the root to that node

» Descendant of a node: any node on a path from
the node to the last node in the path

» Level (depth) of a node: number of edges in the
path from the root to that node

» Height of a tree: number of levels (
some books define it as iﬂ@dc -1

Fa
/N
/NN

- G — H

A Tree Has Levels

LEVEL 0 Owner
Jake
Manager Chef
Brad Carol
| |
Waitress Waiter Cook
Joyce Chris Max

Iper

en

27

LEVEL 1

L_evel One

Owner
Jake
/ Manager Chef
1 Brad Caroal
| o
Waitress Waiter Cook Helper
Joyce Chris Max Len

28

LEVEL 2

_evel Two

Waitress

(

Joyce

\

Owner
Jake
Manager Chef
Brad Carol
Waiter Cook
Chris Max

Helper
Len

29

A Subtree

Owner
Jake

Manager
Brad

Waitress
Joyce

Waiter
Chris

LEFT SUBTREE OF ROOT NODE

Chef
Caral
Cook Helper
Max Len

30

Another Subtree

Owner
Jake
Manager
Ber
Waitress Waiter
Joyce Chris

RIGHT SUBTREE
OF ROOT NODE

31

What is the # of nodes N of a full
tree with height h?

What is the height h of a full tree
with N nodes?

» The is NV
(sam

» The min height of a tree with N nodes is
log(N+1)

.

Searching a binary tree

(1) Start at the root

(2) Search the tree level by level, until you
find the element you are searching for
(O(N) time in worst case)

Is this better than searching a linked list?

.

Binary Search Trees

» Binary Search Tree Property: The value stored
at a node is than the value stored at
its left child and than the value stored at
its right child

» Thus, the value stored at the root of a subtree
iS than any value in its left subtree
and than any value in its right subtree!!

._ Subtree)

Ve

-~ -

S ———

All values in the All values in the
left subtree are right subtree are
less than the value greater than the value
in the root node. in the root node.

T

Searching a binary search tree

(1) Start at the root

(2) Compare the value of the item you are
searching for with the value stored at the
root

(3) If the values are equal, then item found.
otherwise, if it is a leaf node, then not found

Searching a binary search tree
(cont.)

(4) If it is less than the value stored at the
root, then search the left subtree

(5) If it is greater than the value stored at
the root, then search the right subtree

(6) Repeat steps 2-6 for the root of the
subtree chosen in the previous step 4 or 5

Is this better than searching a linked list?

\ M

Tree node structure

Node
Right(Node)

) Info(Node) \

template<class ltemType>

struct TreeNode {
IltemType info;
TreeNode™* left;
TreeNode* right; };

Binary Search Tree Specification

#include <fstream.h>

template<class ltemType>
struct TreeNode;

enum OrderType {PRE_ORDER, IN_ORDER, POST_ORDERY};

template<class ltemType>
class TreeType {
public:
TreeType();
~TreeType();
TreeType(const TreeType<ltemType>&);
void operator=(const TreeType<ItemType>&);
void MakeEmpty();
bool IsEmpty() const;
bool IsFull() const;
Wt NumberOfNodes() const;

Binary Search Tree Specification

void Retrieveltem(ltemType&, bool& found);
void Insertitem(ltemType);
void Deleteltem(ltemType);
void ResetTree(OrderType);
void GetNextltem(ltemTypeé&, OrderType, bool&);
void PrintTree(ofstream&) const;
private:
TreeNode<ItemType>* root;

3

Function NumberOfNodes

» Recursive implementation
#nodes in a tree =

#nodes in left subtree + #nodes in right
subtree + 1

» What is the size factor?

Number of nodes in the tree we are examining
» What is the base case?

The tree is empty

» What is the general case?

CountNodes(Left(tree)) + CountNodes(Right(tree))
+ 1

Function NumberOfNodes (cont.)

template<class IltemType>
Int TreeType<ltemType>:: () const

return CountNodes(root);

}

template<class ItemType>
Int (TreeNode<ItemType>* tree)

If (tree == NULL)
return O;
else

return CountNodes(tree->left) + CountNodes(tree->right) + 1;

Let’s consider the first few steps:

Count({left E) + Count{right E) + 1

ret 2
H c Cﬁ / _ \
ount(left C) + Cou%

<—* ret 0 / <_.. -
@ oo o Count(left A) + Count(right A) + 1

ret 0 v et
@ O

Count(left B) + Count{right B) + 1

O

Function Retrieveltem

netrieve: 14

Compare 18 with 17: Compare 18 with 20: Compare 18 with 18:
Choose right subtree Choose left subtree Found !

current tree
R 17 curren’r tree

) X
18) (18) (29 16) (25

current tree

Function Retrieveltem

» What is the size of the problem?
Number of nodes in the tree we are examining

» What is the base case(s)?
1) When the key is found
2) The tree is empty (key was not found)

» What is the general case?
Search in the left or right subtrees

Function Retrieveltem (cont.)

template <class ltemType>
void TreeType<ItemType>:: (ItemType& item,bool& found)

{
Retrieve(root, item, found);

}

template<class ltemType>
void (TreeNode<ItemType>* tree,ltemType& item,bool& found)
{
If (tree == NULL)
found = false;
else if(item < tree->info)
Retrieve(tree->left, item, found);
else if(item > tree->info)
Retrieve(tree->right, item, found);
else {
item = tree->info;
found = true;

Function

Insertitem

» Use the

binary
search tree

property to
insert the
new item at """
the correct
place

(a) tree

(b) Insert 5

tneeB—— 5

(e) Insert 3

~E—8

3

(c) Insert 9

(a) The initial call tree | &

.
/ 15

/ N\

2 10 20

X
4

(b) The first recursive call tree | &

N

15

YN\

10 20

(c) The second recursive call tree | o

.

10

(d) The base case tree | o

\ New
node

Function Insertltem (cont.)

» What is the of the problem?
Number of nodes in the tree we are examining

» What is the ?
The tree is empty

» What is the ?
Choose the left or right subtree

Function Insertltem (cont.)

template<class ltemType>

void TreeType<ItemType>:: (ItemType item)
Insert(root, item);

}

template<class ItemType> _

VoI (TreeNode<ItemType>*& tree, ItemType item)

If(tree == NULL) {
tree = new TreeNode<ItemType>;
tree->right = NULL,;
tree->left = NULL,;
tree->info = item;

else if(item < tree->info)
Insert(tree->left, item);

else

} Insert(tree->right, item);

Function Insertltem
(cont.)

(a) The initial call tree (a) The last call to Insert

Insert(tree->right.,item};

(b) The first recursive call tree B\

15
/N
0

1

(¢) The second recursive call tree B\
10
(d) The base case tree S A
by new operator

20

Does the order of inserting
elements into a tree matter?

» Yes, certain orders produce very unbalanced
trees!!

» Unbalanced trees are not desirable because
search time increases!!

» There are advanced tree structures (e.g., red-
black trees”) which guarantee balanced trees

Does the
order of

Inserting
SENERIS

INtO a tree
matter?
(cont.)

(@ InputD B F ACE G

(¢)Input:A B C D E F G

Function Deleteltem

» First, find the item; then, delete it
» Important: binary search tree property

must be preserved!!
» We need to consider three different cases:
(1)
(2)
(3)

De
De

De

eting a leaf
eting a node with only one child
eting a node with two children

T
(1) Deleting a leaf

treeB\I
B/ \Q
/ \

.

Z

T
(2) Deleting a node with
only one child

(3) Deleting a node with t
children

(3) Deleting a node with two
children (cont.)

» Find predecessor (it is the rightmost node
in the left subtree)

» Replace the data of the node to be deleted
with predecessor's data

» Delete predecessor node

-

Function Deleteltem (cont.)

» What is the of the problem?
Number of nodes in the tree we are examining

» What is the ?
Key to be deleted was found

» What is the ?
Choose the left or right subtree

Function Deleteltem (cont.)

template<class ltemType>
void TreeType<ItmeType>:: (ItemType item)
{

Delete(root, item);

}

template<class ltemType>
void (TreeNode<IltemType>*& tree, ItemType item)
{
If(item < tree->info)
Delete(tree->left, item);
else if(item > tree->info)
Delete(tree->right, item);
else
DeleteNode(tree);

Function Deleteltem (cont.)

template <class ItemType>
void (TreeNode<ItemType>*& tree)

{
ltemType data; e [l

TreeNode<IltemType>* tempPtr; =\

tempPtr = tree; : y

If(tree->left == NULL) { AR,

tree = tree->right; L
delete tempPtr;

}
else if(tree->right == NULL) {
tree = tree->left; ,
delete tempPtr; ~ B
}
else { e
GetPredecessor(tree->left, data); : A8
tree->info = data; D
Delete(tree->left, data);

M

Function Deleteltem (cont.)

template<class IltemType>
void (TreeNode<ItemType>* tree, ltemType& data)
{
while(tree->right '= NULL)
tree = tree->right;
data = tree->info;

}

Tree Traversals

There are mainly three ways to traverse a
tree:

norder Traversal
Postorder Traversal
Preorder Traversal

.

lnorder Traversal:

i

.’ it left subtree first

66

Ilnorder Traversal

» Visit the nodes in the left subtree, then
visit the root of the tree, then visit the
nodes in the right subtree

(tree)

If tree is not NULL
Inorder(Left(tree))
Visit Info(tree)
Inorder(Right(tree))

(Warning:

\ M

ISit left subtree first

68

Postorder Traversal

» Visit the nodes in the left subtree first,
then visit the nodes in the right subtree,
then visit the root of the tree

(tree)

If tree is not NULL
Postorder(Left(tree))
Postorder(Right(tree))
Visit Info(tree)

Preorder Traversal:

i

.’ it left subtree second

70

Preorder Traversal

» Visit the root of the tree first, then visit the
nodes in the left subtree, then visit the
nodes in the right subtree

(tree)
If tree is not NULL
Visit Info(tree)
Preorder(Left(tree))

Preorder(Right(tree))

Tree
Traversal
S

Inorder:
Preorder:
Postorder:

Function PrintTree

» We use "inorder” to print out the node values

» Why?? (keys are printed out in ascending
order!!)

» Hint. use binary search trees for sorting !!

Function PrintTree (cont.)

void TreeType:: (ofstreamé& outFile)

Print(root, outFile);

}

template<class ltemType>
void (TreeNode<ItemType>* tree, ofstreamé& outFile)

iIf(tree '= NULL) {
Print(tree->left, outFile);
outFile << tree->info;
Print(tree->right, outFile);

}

}

(see textbook for overloading <<
and >>)

Class Constructor

template<class ItemType>
TreeType<ltemType>::TreeType()

{
root = NULL;

}

.

Class Destructor

free | &

N
N/
%

/

B

Z

2
o™
\

-

Class Destructor (cont’d)

» Delete the tree in a "bottom-up” fashion

v Postorder traversalis appropriate for this
I

{TreeType:: ()
}Destroy(root);
}/oid (TreeNode<ItemType>*& tree)
If(tree '= NULL) {
estroy(tree->left);

Destro tree >right
delete¥r ght);

Copy Constructor

tree | &

SN
NS
/

/

B
Z

o
o™
\

-

W

Copy Constructor (cont’d)

template<class ItemType>
TreeType<ltemType>:: (const TreeType<ltemType>&
orlglnalTree)

{
}CopyTree(root, originalTree.root);

*

nmnlaf acr | s Ifan\lnn\

~\

VoI TreeNode<ItemT _Pe>*& copy,
TreeNode<It mType>* originallree)

{

If(originalTree == NULL)
copy = NULL;

else {
copy = new TreeNode<IltemType>;
copy->info = originalTree->info;
CopyTreeEcopy->Ieft orlglnaITree >left);
CopyTree(copy->right, originalTree->right);

ResetTree and GetNextltem

» The user is allowed to specify the tree
traversal order

» For efficiency, ResetTree stores in a queue
the results of the specified tree traversal

» Then, GetNextitem deauenies the node

values from tt 5 7T
SN N
/ /N

N

\

\ M

ResetTree and GetNextltem

(cont.)

(specification file)

enum OrderT Ee {PRE ORDER, IN_ORDER,
POST OR

template<class IltemType>
class TreeType {
public:

private:
TreeNode<ItemType>* root;
QueType<ltemType> preQue;
QueType<itemType> inQue;
QueType<itemType> postQue,;

J

ResetTree and GetNextltem
(cont.)

template<class IltemType>

void (TreeNode<ItemType>*,
QueType<itemType>&);

template<class IltemType>

void (TreeNode<ltemType>*,
QueType<ltemType>&);

template<class ItemType>

void (TreeNode<ItemType>*,
QueType<ltemType>&);

ResetTree and GetNextltem
(cont.)

template<class IltemType>

void (TreeNode<IltemType>tree,
QueType<itemType>& preQue)p

If(tree I= NULL) {
preQue.Enqueue(tree->info);
PreOrder(tree->left, preQue);
PreOrder(tree->right, preQue);

ResetTree and GetNextltem (cont.)

template<class ItemType>

void (TreeNode<ltemType>tree,
QueType<itemType>& mQue;O

{

If(tree = NULL) {
InOrder(tree->left, inQue);
INQue.Enqueue(tree->info);
InOrder(tree->right, inQue);

-

ResetTree and GetNextltem

(cont.)
template<class IltemType>

void (TreeNode<ltemType>tree,
QueType<ItemType>& postQue)

{

If(tree = NULL) {
PostOrder(tree->left, postQue);
PostOrder(tree->right, postQue);
postQue.Enqueue(tree->info);

The function ResetTree

template<class IltemType>
void TreeType<ltemType>:: (OrderType order)

switch(order) {
case PRE_ORDER: PreOrder(root, preQue);
break;
case IN_ORDER: InOrder(root, inQue);
break;
case POST_ORDER: PostOrder(root, postQue);
break;

The function GetNextltem

template<class ltemType>

oid TreeType<ItemType>:: ltemType& item,
Y IOrderTygg orotler, pOoI finished) (ypes |

finished = false:
switch(order) {
case PRE_ORDER: preQue.Dequeue(item);
iTgpreQue.lsEmpty())
Inished = true;
break:

case IN_ORDER: inQue.Dequeue(item);

B ifginQue.IsEmpty())
Inished = true;
break;

case POST ORDER: postQue.Dequeue(item);
If(postQue.IsEmpty())
Inished = true;
break;

lterative Insertion and

Deletion
» See textbook

.

Comparing Binal

Lists

Big-O Comparison
Binary Array-

earch Tree based List
O(1) 0(1)

Linked
List
O(1)

O(logN) | O(logN)

O(N)

O(N)

O(N)

Exercises

» 1-3, 8-18, 21, 22, 29-32

.

Definition

G consists of two sets
— a finite, nonempty set of vertices V(G)
— a finite, possible empty set of edges E(G)
— G(V,E) represents a graph

An IS one In which the pair of
vertices in a edge Is unordered, (Vo, V1) = (V1,Vo)
JAN IS one In which each edge Is a

directed pair of vertices, <vo, V1> 1= <vi,vo>

V(G1)={0,1,2,3} E(G1)={(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)}
V(G2)={0,1,2,3,4,5,6} E(G2)={(0,1),(0,2),(1,3),(1,4),(2,5),(2,6)}
V(G3)={0,1,2} E(G3)={<0,1>,<1,0> <1,2>}

complete undirected graph: n(n-1)/2 edges
omplete directed graph: n(n-1) edges

= A complete gra
maximum number

— for witH n vertices, the maximum
number of edges Is
— for with n vertices, the maximum

number of edges IS
— example: G1 is a complete graph

= 1f (Vo, V1) IS
— Vo and vi are
— The edge (Vo, V1) Is Incident on vertices Vo and vi
= If <vo, vi> Is an edge In a directed graph
— Vo IS V1, and vi1 IS Vo
— The edge <vo, V> IS Incident on Vo and v1

*Figure 6.3:Example of a graph with feedback loops and a

multigraph (p.260)

/ J

self edge multigraph:
(a) (b) multiple occurrences

of the same edge

Subgraph and Path

m A subgraph of G is a graph G’ such that V(G’)
1s a subset of V(G) and E(G”) 1s a subset of E(G)

= A path from vertex vy to vertex vq In a graph G,
IS a sequence of vertices, Vp, Vi, Vi, ..., Vin, Vg,
such that (vp, Vi), (Viy, Vi2), ..., (Vin, Vq) are edges
In an undirected graph

= The length of a path 1s the number of edges on
It

Figure 6.4: subgraphs of G, and G; (p.261)

£ BV o

G1 (i) (i) (iv)

(a) Some of the subgraph of G,

@ : @
él.é /\F’Fﬁ

o)

(1) (1) ("l) (iv)

- (b) Some of the subgraph of G,

—E_©

®)

Simple Path and Style

= Asimple path Is a path in which all vertices,
except possibly the first and the last, are distinct

= Acycle 1s a simple path in which the first and
the last vertices are the same

= In an undirected graph G, two vertices, vo and v
are connected If there Is a path in G from vo t0 vi

= An undirected graph Is connected If, for every
pair of distinct vertices vi, vj, there Is a path
from vito v;

connected

©
2 (LU (2

& R

.

tree (acyclic graph)

10

Connected Component

= A connected component of an undirected graph
IS @ maximal connected subgraph.

m Atree Is a graph that is connected and acyclic.

= Adirected graph is strongly connected If there
IS a directed path from vi to vj and also
from vj to vi

= Astrongly connected component Is a maximal
subgraph that Is strongly connected.

\ N
\ \\\\M 11
o

*Figure 6.5: A graph with two connected components (p.262)

connected component (maximal connected subgraph)

— T~

SNONENC

G, (not connected)

12

*Figure 6.6: Strongly connected components of G, (p.262)

strongly connected component
not strongly connected (maximal strongly connected subgraph)

0)

@
: @

G3

13

Degree

= The degree of a vertex Is the number of edges
Incident to that vertex

= For directed graph,

— the in-degree of a vertex v is the number of edges
that have v as the head

— the out-degree of a vertex v is the number of edges
that have v as the tail

— 1f di 1s the degree of a vertex I in a graph G with n
vertlces and e edges, the number of edges is

14

undirected graph

degree ; @

0 2
(L \
3(1 2)3 égé 3
ot ® ®
C;l3 1 1 GZ 1 1
@ In:1, out: 1
directed graph I |
In-degree
out-degree @ in: 1, out: 2

@(_

In: 1, out: O
NS

ADT for Graph

structure Graph is

objects: a nonempty set of vertices and a set of undirected edges, where each
edge is a pair of vertices

functions: for all graph € Graph, v, v, and v, € Vertices
Graph Create()::=return an empty graph

Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no
Incident edge.

Graph InsertEdge(graph, vi,v2)::= return a graph with new edge
between v1 and v2

Graph DeleteVertex(graph, v)::= return a graph in which v and all edges
Incident to it are removed

Graph DeleteEdge(graph, vi, v2)::=return a graph in which the edge (vi, v2)
IS removed

Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE
else return FALSE
List Adjacent(graph,v)::= return a list of all vertices that are adjacent to v

16

Graph Representations

= Adjacency Matrix
= Adjacency Llists

.

Adjacency Matrix

m Let G=(V,E) be a graph with n vertices.

= The adjacency matrix of G Is a two-dimensional
n by n array, say adj _mat

m If the edge (vi, vj) Is In E(G), ad]_mat[i][j]=1

= If there 1s no such edge In E(G), ad)_mat][i][j]=0

= The adjacency matrix for an undirected graph Is

symmetric; the adjacency matrix for a digraph
eed not be symmetric

Do
% 5\
\ \
by
\ A

19

0
1 001 0 0 O0 O
1 001 0 00O
011 00O0O0O
0 00 0O01O00DO0
0O 0001 01O
0 00 001 01
0 00 0O0O010O0

Ga

/

symmetric

1 11 0

Merits of Adjacency Matrix

= From the adjacency matrix, to determine the
connection of vertices Is easy

= The degree of a vertex is 2 adj_mat[il[j]

= For a digraph, the row sum is the out_degree,
while the column sum is the Iin_degree

ind(vi) =Y A[},i] outd(vi) =3 Ali,]

Data Structures for Adjacency Lists

Each row in adjacency matrix is represented as an adjacency list.

#define MAX VERTICES 50
typedef struct node *node pointer;
typedef struct node {
int vertex;
struct node *link;
};
node pointer graph[MAX VERTICES] ;
int n=0; /* vertices currently in use *

21

3 EE-{114-12

SLLICES an

Interesting Operations

mdegree of a vertex In an undirected graph
—4# of nodes In adjacency list

m# of edges In a graph
—determined in O(n+e)

mout-degree of a vertex In a directed graph
—4# of nodes In its adjacency list

min-degree of a vertex in a directed graph
—traverse the whole data structure

-

M

23

Compact Representation

(0 (4D
L @
«) (6>

node[0] ... node[n-1]: starting point for vertices

node[n]: n+2e+1
node[n+1] ... node[n+2e]: head node of edge

D

0] 9 8] 23 16] 2
1] 11 9] 1 17] 5
2] 13 10] 2 18] 4
3] 15 11] 0 19] 6
4] 17 12] 3 20] 5
5] 18 13] 0 21] 7
6] 20 14] 3 22] 6
7 15] 1

24

Figure 6.10: Inverse adjacency list for G;

I | 0 1 | NULL
(1) 1 0 | NULL
é}) 1 | NULL

Determine in-degree of a vertex in a fast way.

.

Figure 6.11: Alternate node structure for adjacency lists
(p.267)

tail head | column link for head | row link for tail

CHAPTER 6 26

Figure 6.12: Orthogonal representation for graph
G5(p.268)

oo [T E? CEN

0 - "0 1‘NULL NULL
H s

— 1 O‘NULL »1

NULL

NULL

2 - NULL

0 1 O]
1 0 1
00 0

.

D—E_© [

27

Figure 6.13:Alternate order adjacency list for G, (p.268)

Order is of no significance.

headnodes vertax link

3 — | 1 o—— | 2 INULL

0 —— | 3 |NULL

0 — | 1 |INULL

1 o—— | 0 INULL

28

Some Graph Operations

= Traversal
Given G=(V,E) and vertex v, find all weV,
such that w connects v.

— Depth First Search (DFS)
preorder tree traversal

— Breadth First Search (BFS)
level order tree traversal

= Connected Components

. = Spanning Trees

29

*Figure 6.19:Graph G and its adjacency lists (p.274)

depth first search: vO, v1, v3, v7, v4, v5, v2, v6

s T]
e - G [almm]
oL 4> 51 b [elmm]
P l—.—ﬂ_.ﬁ | 7 7’.]],1,

(b)

breadth first search: vO, v1, v2, v3, v4, v5, v6, V7

30

Depth First Search

#define FALSE O
#define TRUE 1
short int visited[MAX VERTICES];

void dfs (int v)
{
node pointer w;
visited[v]= TRUE;
printf (“354”, v);
for (w=graph[v], w; w=w->link)
i1f ('visited[w—->vertex])

dfs (w->vertex) ; | Data structure
adjacency list: O(e)
adjacency matrix: O(n?)

31

Breadth First Search

typedef struct queue *queue pointer;
typedef struct queue {
int vertex;
queue pointer 1link;
};
void addg(queue pointer *,
queue pointer *, int);

int deleteq(queue pointer ¥*);

32

Breadth First Search (continued)

void bfs (int v)
{

node;pointer W,

queue pointer front, rear;

front = rear = NULL;
printf (“3$54”, v);
visited[v] = TRUE;

adjacency list: O(e)
adjacency matrix: O(n?)

addq(&front, &rear, v);

33

while (front) {
v= deleteqg(&front) ;
for (w=graph[v], w; w=w->link)
if (!'visited[w->vertex]) {
printf (V3%$5d”, w->vertex);
addqg(&front, &rear, w->vertex)
visited[w->vertex] = TRUE;

34

Connected Components

void connected (void)
{
for (1i=0; i<n; 1i++) {
if ('visited[i]) {
dfs (1) ;
printf (“\n”) ;

}
adjacency list: O(n+e)
} adjacency matrix: O(n?)

N}

35

Searching and Sorting
Topics

» Sequential Search on an Unordered File
» Sequential Search on an Ordered File

» Binary Search

» Bubble Sort

» Insertion Sort

-

Common Problems

» There are some very common problems that

we use computers to solve:
- Searching through a lot of records for a specific
record or set of records
> Placing records in order, which we call sorting
» There are numerous algorithms to perform
searches and sorts. We will briefly explore

a few common ones.

Searching

» A question you should always ask when
selecting a search algorithm is “How fast does
the search have to be?” The reason is that, in
general, the faster the algorithm is, the more
complex it is.

» Bottom line: you don’t always need to use or
should use the fastest algorithm.

» Let’s explore the following search algorithms,
keeping speed in mind.

> Sequential (linear) search

> Binary search

Sequential Search on an Unordered File

» Basic algorithm:
Get the search criterion (key)
Get the first record from the file

While ((record !'= key) and (still more records))
Get the next record
End_while

» When do we know that there wasn’t a record in
the file that matched the key?

Sequential Search on an Ordered File

» Basic algorithm:

Get the search criterion (key)

Get the first record from the file

While ((record < key) and (still more records))
Get the next record

End_while

If (record = key)
Then success
Else there is no match in the file

End_else

» When do we know that there wasn’t a record
in the file that matched the key?

Sequential Search of
Ordered vs. Unordered List

» Let’s do a comparison.

» If the order was ascending alphabetical on
customer’s last names, how would the search

for John Adams on the ordered list compare
with the search on the unordered list?

> Unordered list

- if John Adams was in the list?

- if John Adams was not in the list?
> Ordered list

- if John Adams was in the list?

- if John Adams was not in the list?

Ordered vs Unordered (con’t)

» How about George Washington?
- Unordered
if George Washington was in the list?
If George Washington was not in the list?
> Ordered
if George Washington was in the list?
If George Washington was not in the list?

» How about James Madison?

Ordered vs. Unordered (con’t)

» Observation: the search is faster on an ordered
list only when the item being searched for is not
in the list.

» Also, keep in mind that the list has to first be
placed in order for the ordered search.

» Conclusion: the efficiency of these algorithms
is roughly the same.

» So, if we need a faster search, we need a
completely different algorithm.

» How else could we search an ordered file?

Binary Search

» If we have an ordered list and we know how
many things are in the list (i.e., number of
records in a file), we can use a different
strategy.

» The binary search gets its name because the
algorithm continually divides the list into two
parts.

How a Binary Search Works

Always look at the center
value. Each time you get
to discard half of the
remaining list.

Is this fast ?

How Fast is a Binary Search?

» Worst case: 11 items in the list took 4 tries

» How about the worst case for a list with 32
items ?
> 1st try - list has 16 items
> 2nd try - list has 8 items
> 3rd try - list has 4 items
> 4th try - list has 2 items
> 5th try - list has 1 item

How Fast is a Binary Search? (con't)
List has 250 items List has 512 items

Isttry - 125 _lsttry—256

items items

2nd try - 63 items ~ 2nd try - 128

3rd try - 32 items Iitems

4th try — 16 items 3rd try - 64 items

Sth try - 8 items 4th try — 32 items

6th try - 4 items 5th try - 16 items

/th try - 2 items oth try - 8 items

8th try - 1 item /th try - 4 items
8th try - 2 items

Oth trv/ — 1 itam

What’s the Pattern?

List of 11 took 4 tries
List of 32 took 5 tries
List of 250 took 8 tries
List of 512 took 9 tries

v v VvV Vv

» 32 =2°>and 512 = 2°
» 8 <11 <16 23 <11 < 24
» 128 < 250 < 256 27 < 250 < 28

A Very Fast Algorithm!

» How long (worst case) will it take to find an
item in a list 30,000 items long?

210 = 1024 213 =8192
211 = 2048 2% = 16384
22 = 4096 21> =32768

» So, it will take only 15 tries!

-

Lg n Efficiency

» We say that the binary search algorithm runs in
log, n time. (Also written as Ig n)

» Lg n means the log to the base 2 of some value
of n.

»8=23 Ig8=3 16=2% Igl16 =4

» There are no algorithms that run faster than Ig
n time.

Sorting

» So, the binary search is a very fast search
algorithm.

» But, the list has to be sorted before we can
search it with binary search.

» To be really efficient, we also need a fast sort
algorithm.

Common Sort Algorithms

Bubble Sort Heap Sort
Selection Sort Merge Sort
Insertion Sort Quick Sort

» There are many known sorting algorithms.
Bubble sort is the slowest, running in n? time.
Quick sort is the fastest, running in nlgn
time.

» As with searching, the faster the sorting
algorithm, the more complex it tends to be.

» We will examine two sorting algorithms:

Bubble Sort Code

void bubbleSort (inta[], int size)

{

inti, j, temp;
for(i=0;i < size;i++) /* controls passes through the list */
{

for(j=0;j <size-1;j++) /* performs adjacent comparisons
*/

{

if(a[j]l>a[j+1]) /* determines if a swap should

occur */

{

temp =a[jl; /* swap is performed */

aljl=alj+1];
alj+1] = temp;

Insertion Sort

» Insertion sort is slower than quick sort, but
not as slow as bubble sort, and it is easy to
understand.

» Insertion sort works the same way as
arranging your hand when playing cards.

> Out of the pile of unsorted cards that were dealt to
you, you pick up a card and place it in your hand in
the correct position relative to the cards you’'re
already holding.

Arranging Your Hand

Rt
N gt
o1 ¢ ~

<

o1
~

Arranging Your Hand

o | |7

0| |9

S || 6 || 7

Bl me
S| 6 || 7 || K

O 0] 0] ¢ '

Insertion Sort

7

:
DT ¢
5

:
0

alE @
2K

7 5
0 0

&

Unsorted - shaded
Look at 2nd item - 5.
Compare 5 to 7.

5 is smaller, so move 5
to temp, leaving

an empty slot in
position 2.
Move 7 into the empty
slot, leaving position 1
open.

Move 5 into the open
position.

Insertion Sort (con’t)

6
¢

Look at next item - 6.

Compare to 1st - 5.

6 is larger, so leave 5.
Compare to next - 7.
6 is smaller, so move
6 to temp, leaving an
empty slot.

Move 7 into the

5
0

< Ul

slot, leaving position

open.

®

<o Ul
< o @

\

<o

<o Ul

§0w <o <o -
z

‘@F

Move 6 to the open
2nd position.

Insertion Sort (con’t)

King-:

5 6

010

itis.

6.

where it is.

Look at next item -

Compare to 1st - 5.
King is larger, so
leave 5 where

Compare to next -
King is larger, so
leave 6

Compare to next - 7.
King is larger, so
leave 7 where it is.

Insertion Sort (con’t)

Hashing

Concept of Hashing

» In CS, a hash table, or a hash map, is a data
structure that associates keys (names) with
values (attributes).

> Look-Up Table
> Dictionary

> Cache

- Extended Array

Tables of logarithms

Example

Keys Indexes Key-value pairs
(records)

John Smith T Lisa Smith | +1-555-8976

Lisa Smith e hn Smith |+1-555-1234
LISa oMty 873 /' John Smi - =

Sam Doe /——*:‘Zs* Sam Doe | +1-555-5030

A small phone book as a hash table.
e Wikipedia)

Dictionaries

» Collection of pairs.
> (key, value)
- Each pair has a unique key.
» Operations.
o Get(theKey)
o Delete(theKey)
> Insert(theKey, theValue)

.

Just An Ildea

» Hash table :
- Collection of pairs,
> Lookup function (Hash function)

» Hash tables are often used to implement
associative arrays,

- Worst-case time for Get, Insert, and Delete is
O(size).
- Expected time is O(1).

-

Search vs. Hashing

» Search tree methods: key comparisons
> Time complexity: O(size) or O(log n)

» Hashing methods: hash functions
- Expected time: O(1)

» Types

- Static hashing (section 8.2)
- Dynamic hashing (section 8.3)

\ M

Static Hashing

» Key-value pairs are stored in a fixed size
table called a Aash table.
- A hash table is partitioned into many buckets.
- Each bucket has many s/ots.
- Each slot holds one record.

> A hash function f(x) transforms the identifier (key)
into an address in the hash table

\ M

Hash table

s slots

s-1

s1939ng g

Data Structure for Hash Table

#define MAX_CHAR 10
#define TABLE_SIZE 13
typedef struct {
char key[MAX_CHAR];
/* other fields */
} element;
element hash_table[TABLE_SIZE];

Linear probing (linear open
addressing)

» Open addressing ensures that all elements
are stored directly into the hash table, thus
it attempts to resolve collisions using
various methods.

» Linear Probing resolves collisions by placing
the data into the next open slot in the table.

Linear Probing - Get And
Insert

» divisor = b (hnumber of buckets) = 17.
» Home bucket = key % 17.

0 4 8 12 16

* |Insert pairs whose keys are 6, 12, 34, 29, 28, 11,
23, 7,0, 33, 30,45

.

Linear Probing - Delete

0 4 8 12 16

» Delete(0)

0 4 8 12 16

« Search cluster for pair (if any) to fill vacated bucket.

. 0 4 8 12 16

Linear Probing - Delete(34)

0 4 8 12 16
(34 0[45 [[[6[237] [[28[12[29[11]30]33
0 4 8 12 16
- [o[45 [[[e[237[[[28]12]29[11[30[3]

» Search cluster for pair (if any) to fill vacated
bucket.

0 4 8 12 16
0 4 8 12 16

Linear Probing - Delete(29)

0 4 8 12 16

0 4 8 12 16

» Search cluster for pair (if any) to fill vacated
bucket.

0 4 8 12 16

0 4 8 12 16

12 16

Linear Probing (program 8.3)

void linear_insert(element item, element ht[]){
Int i, hash_value;
| = hash_value = hash(item.key);

while(strlen(ht[i].key)) {
If (!strcmp(ht[i].key, item.key)) {

fprintf(stderr, “Duplicate entry\n”); exit(1);
}

| = (i+1)%TABLE_SIZE;
If (i == hash_value) {
fprintf(stderr, “The table is full\n”); exit(1);

;)
ht[i] = item;

Problem of Linear Probing

» ldentifiers tend to cluster together
» Adjacent cluster tend to coalesce
» Increase the search time

Dynamic Hashing Using

Directories
Identifiers | Binary representaiton
a0 100 000
al 100 001
b0 101 000
bl 101 001
cO 110000
cl 110001
c2 110 010
c3 110 011

Example:
M (# of pages)=4,
P (page capacity)=2

Allocation: lower order
two bits

Figure 8.9: A trie to hole
identifiers (p.415)

Read it in reverse
order.

¢5: 110 101
c1: 110 001

7—:-!21—(),%_

al, bl

< -

(a) two level trie on four pages

= a0, b0

c2

= al, bl

cS

(b) inserting ¢5 with overflow

A=

c3

(c) inserting c1 with overflow

Figure 8.9: A trie to hold identifiers

Dynamic Hashing Using
Directories I

» We need to consider some issues!

- Skewed Tree,
- Access time increased.

» Fagin et. al. proposed extendible hashing to
solve above problems.

Dynamic Hashing Using
Directories lll

» A directories is a table of pointer of pages.
» The directory has k bits to index 2Ak entries.

» We could use a hash function to get the
address of entry of directory, and find the
page contents at the page.

The directory of
the three tries of
Figure 8.9

00 —2. a0, b0

01 -—Caal,
10 -2 2

i1 % 63

(a) 2 bits

bl

000 —2— a0, b0
001 —S— al, bl

0102 2

011 —-%. ¢3

10— %

101-9% ¢5

b

110 —==

1 L

(b) 3 bits

0000—%~ a0,
0001—S- al,
0010—2- ¢2
011t 3
0100—2~

0101—- ¢5

01102

o111-fo

1000—2

1001-9%. b1

10102

1011t

11002

116

11102

111-te

(c) 4 bits

b0

cl

Figure 8.10: Tries collapsed into directories

Dynamic Hashing Using
Directories |V

It is obvious that the directories will grow
very large if the hash function is clustering.

Therefore, we need to adopt the uniform
hash function to translate the bits
sequence of keys to the random bits
sequence.

Moreover, we need a family of uniform
:H_”,__hash functlons since the directory will
WA grow.

